References for Chapter 1: Introduction

[1] M. F. de Souza Porto and C. M. de Freitas, Major chemical accidents in industrializing countries: The socio-political amplification of risk, Risk Anal., 1996, 16, 19-29.
DOI: n/a

[2] D. G. Gunster, N. L. Bonnevie, C. A. Gillis and R. J. Wenning, Assessment of chemical loadings to Newark Bay, New Jersey from petroleum and hazardous chemical accidents occurring from 1986 to 1991, Ecotoxicol. Environ. Safety, 1993, 25, 202-13.
DOI: n/a

[3] A. W. Maki, The Exxon Valdez oil spill: initial environmental impact assessment., Environ. Sci. Technol., 1991, 25, 24-9.
DOI:10.1021/es00013a001

[4] C. H. Peterson, S. D. Rice, J. W. Short, D. Esler, J. L. Bodkin, B. E. Ballachey and D. B. Irons, Long-Term Ecosystem Response to the Exxon Valdez Oil Spill, Science, 2003, 302, 2082-2086.
DOI:10.1126/science.1084282

[5] J. H. Clark, Green chemistry: Today (and tomorrow), Green Chem., 2006, 8, 17-21.
DOI:10.1039/b516637n

[6] P. T. Anastas and J. Warner, Green Chemistry: Theory and Practice; Oxford University Press, 2000, ISBN 0-19-850698-8.

[7] P. T. Anastas and M. M. Kirchhoff, Origins, current status, and future challenges of green chemistry, Acc. Chem. Res., 2002, 35, 686-694.
DOI:10.1021/ar010065m

[8] J. H. Clark and P. Smith, Basic principles of Green Chemistry, Innov. Pharma. Technol., 2005, 94-97.
DOI: n/a

[9] Regulation (EC) No 1907/2006 of the European Parliament and of the Council, Official J. Eur. Union, 2006, L 396, pp. 1-849.

[10] R. A. Sheldon, Consider the environmental quotient, Chemtech, 1994, 24, 38-47.
DOI: n/a

[11] R. A. Sheldon, Catalysis: The key to waste minimization, J. Chem. Technol. Biotechnol., 1997, 68, 381-388.
DOI:10.1002/(SICI)1097-4660(199704)68:4<381::AID-JCTB620>3.0.CO;2-3

[12] B. M. Trost, The atom economy - a search for synthetic efficiency, Science, 1991, 254, 1471-1477.
DOI:10.1126/science.1962206

[13] L. Carrette, K. A. Friedrich and U. Stimming, Fuel cells: Principles, types, fuels, and applications, ChemPhysChem, 2000, 1, 163-193.
DOI:10.1002/1439-7641(20001215)1:4<162::AID-CPHC162>3.0.CO;2-Z

[14] J. K. F. Buijink, J. J. M. van Vlaanderen, M. Crocker and F. G. M. Niele, Propylene epoxidation over titanium-on-silica catalyst - the heart of the SMPO process, Catalysis Today, 2004, 93-95, 199-204.
DOI:10.1016/j.cattod.2004.06.041

[15] R. Ben-Daniel, L. Weiner and R. Neumann, Activation of nitrous oxide and selective epoxidation of alkenes catalyzed by the manganese-substituted polyoxometalate, [MnIII2ZnW(Zn2W9O34)2]10-, J. Am. Chem. Soc., 2002, 124, 8788-8789.
DOI:10.1021/ja0259077

[16] R. L. Lankey and P. T. Anastas, Life-cycle approaches for assessing green chemistry technologies, Ind. Eng. Chem. Res., 2002, 41, 4498-4502.
DOI:10.1021/ie0108191

[17] W. McDonough, M. Braungart, P. T. Anastas and J. B. Zimmerman, Applying the principle of green engineering to cradle-to-cradle design, Environ. Sci. Technol., 2003, 37, 434A-441A.
Free access: http://pubs.acs.org/cgi-bin/article.cgi/esthag-a/0000/37/i23/pdf/1203anastas.pdf

[18] S. Saiz, C. Kennedy, B. Bass and K. Pressnail, Comparative life cycle assessment of standard and green roofs, Environ. Sci. Technol., 2006, 40, 4312-4316.
DOI:10.1021/es0517522

[19] P. Bayer and M. Finkel, Life cycle assessment of active and passive groundwater remediation technologies, J. Contam. Hydrol., 2006, 83, 171-199.
DOI:10.1016/j.jconhyd.2005.11.005

[20] A. Tukker, Life-cycle assessment and the precautionary principle, Environ. Sci. Technol., 2002, 36, 70A-75A.
Free access: http://pubs.acs.org/cgi-bin/article.cgi/esthag-a/0000/36/i03/html/03tukker.html

[21] R. A. Sheldon, Atom efficiency and catalysis in organic synthesis, Pure Appl. Chem., 2000, 72, 1233-1246.
DOI:10.1351/pac200072071233

[22] I. P. Beletskaya and A. V. Cheprakov, The Heck reaction as a sharpening stone of palladium catalysis, Chem. Rev., 2000, 100, 3009-3066.
DOI:10.1021/cr9903048

[23] J. G. de Vries, The Heck reaction in the production of fine chemicals, Can. J. Chem., 2001, 79, 1086-1092.
DOI:10.1139/cjc-79-5-6-1086

[24] C. M. Byrne, S. D. Allen, E. B. Lobkovsky and G. W. Coates, Alternating copolymerization of limonene oxide and carbon dioxide, J. Am. Chem. Soc., 2004, 126, 11404-11405.
DOI:10.1021/ja0472580

[25] W. Yu, F. Bian, Y. Gao, L. Yang and Z.-L. Liu, Y-zeolite-catalyzed cyclizations of terpenols, Adv. Synth. Catal., 2006, 348, 59-62.
DOI:10.1002/adsc.200505146

[26] G. S. I. V. Clark, An aroma chemical profile. Geraniol, Perfum. Flavorist, 1998, 23, 19.
DOI: n/a

[27] P. F. Vlad, Superacidic cyclization of terpenoids, Pure Appl. Chem., 1993, 65, 1329-36.
DOI: n/a

[28] G. R. Castro and T. Knubovets, Homogeneous biocatalysis in organic solvents and water-organic mixtures, Crit. Rev. Biotechnol., 2003, 23, 195-231.
DOI:10.1080/0738855031874353

[29] H. Yamada and M. Kobayashi, Nitrile hydratase and its application to industrial production of acrylamide, Biosci. Biotechnol. Biochem., 1996, 60, 1391-400.
DOI: n/a

[30] W. Niu, K. M. Draths and J. W. Frost, Benzene-free synthesis of adipic acid, Biotechnol. Prog., 2002, 18, 201-211.
DOI:10.1021/bp010179x

[31] N. Q. Ran, D. R. Knop, K. M. Draths and J. W. Frost, Benzene-free synthesis of hydroquinone, J. Am. Chem. Soc., 2001, 123, 10927-10934.
DOI:10.1021/ja016460p

[32] S. Mukhopadhyay, G. Rothenberg, H. Wiener and Y. Sasson, Palladium-catalyzed aryl-aryl coupling in water using molecular hydrogen: Kinetics and process optimization of a solid-liquid-gas system, Tetrahedron, 1999, 55, 14763-14768.
DOI:10.1016/S0040-4020(99)00920-5

[33] R. Van Helden and G. Verberg, The oxidative coupling of aromatic compounds with palladium salts, Recueil Trav. Chim. Pays-Bas, 1965, 84, 1263-1273.
DOI: n/a

[34] S. Mukhopadhyay, G. Rothenberg, G. Lando, K. Agbaria, M. Kazanci and Y. Sasson, Air oxidation of benzene to biphenyl - A dual catalytic approach, Adv. Synth. Catal., 2001, 343, 455-459.
DOI:10.1002/1615-4169(200107)343:5<455::AID-ADSC455>3.0.CO;2-O

[35] D. Kweon, Y. Jang and H. Kim, Organic electrochemical synthesis utilizing Mg electrodes. 1. Facile reductive coupling reactions of aromatic halides, Bull. Kor. Chem. Soc., 2003, 24, 1049-1050.
DOI:n/a

[36] L. Durán Pachón, C. J. Elsevier and G. Rothenberg, Electroreductive palladium-catalysed ullmann reactions in ionic liquids: Scope and mechanism, Adv. Synth. Catal., 2006, 348, 1705-1710.
DOI:10.1002/adsc.200606132

[37] R. Jachuck, Process intensification for responsive processing, Chem. Eng. Res. Design, 2002, 80, 233-238.
DOI: n/a

[38] B. Jandeleit, D. J. Schaefer, T. S. Powers, H. W. Turner and W. H. Weinberg, Combinatorial materials science and catalysis, Angew. Chem. Int. Ed., 1999, 38, 2495-2532.
DOI:n/a

[39] T. Satyanarayana and H. B. Kagan, The multi-substrate screening of asymmetric catalysts, Adv. Synth. Catal., 2005, 347, 737-748.
DOI:10.1002/adsc.200505057

[40] K. Jähnisch, V. Hessel, H. Löwe and M. Baerns, Chemistry in microstructured reactors, Angew. Chem. Int. Ed., 2004, 43, 406-446.
DOI:10.1002/anie.200300577

[41] C. de Bellefon, N. Tanchoux, S. Caravieilhes, P. Grenouillet and V. Hessel, Microreactors for dynamic high throughput screening of fluid/liquid molecular catalysis, Angew. Chem. Int. Ed., 2000, 39, 3442-3445.
DOI:10.1002/1521-3773(20001002)39:19<3442::AID-ANIE3442>3.0.CO;2-Q

[42] S. Senkan, Combinatorial heterogeneous catalysis - A new path in an old field, Angew. Chem. Int. Ed., 2001, 40, 312-329.
DOI:10.1002/1521-3773(20010119)40:2<312::AID-ANIE312>3.0.CO;2-I

[43] F. C. Moates, M. Somani, J. Annamalai, J. T. Richardson, D. Luss and R. C. Willson, Infrared thermographic screening of combinatorial libraries of heterogeneous catalysts, Ind. Eng. Chem. Res., 1996, 35, 4801-4803.
DOI:10.1021/ie960476k

[44] A. Holzwarth and W. F. Maier, Catalytic phenomena in combinatorial libraries of heterogeneous catalysts detection of activation and deactivation by emissivity-corrected IR thermography, Platinum Met. Rev., 2000, 44, 16-21.
DOI:n/a

[45] F. M. Menger, A. V. Eliseev and V. A. Migulin, Phosphatase catalysis developed via combinatorial organic chemistry, J. Org. Chem., 1995, 60, 6666-7.
DOI:10.1021/jo00126a008

[46] K. D. Shimizu, M. L. Snapper and A. H. Hoveyda, High-throughput strategies for the discovery of catalysts, Chem. Eur. J., 1998, 4, 1885-1889.
DOI:10.1002/(SICI)1521-3765(19981002)4:10<1885::AID-CHEM1885>3.0.CO;2-D

[47] J. S. Kingsbury, S. B. Garber, J. M. Giftos, B. L. Gray, M. M. Okamoto, R. A. Farrer, J. T. Fourkas and A. H. Hoveyda, Immobilization of olefin metathesis catalysts on monolithic sol-gel: Practical, efficient, and easily recyclable catalysts for organic and combinatorial synthesis, Angew. Chem. Int. Ed., 2001, 40, 4251-4256.
DOI:10.1002/1521-3773(20011119)40:22<4251::AID-ANIE4251>3.0.CO;2-L

[48] S. J. Taylor and J. P. Morken, Thermographic selection of effective catalysts from an encoded polymer-bound library, Science, 1998, 280, 267-270.
DOI:10.1126/science.280.5361.267

[49] J. Hagen, Industrial Catalysis: A Practical Approach; Wiley-VCH, Weinheim, 2006, ISBN: 978-3-527-31144-6.

[50] J. W. Niemantsverdriet, Spectroscopy in Catalysis; VCH, Weinheim, 1995, ISBN 3-527-28726-4.

[51] I. E. Wachs, Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials, Catalysis Today, 2005, 100, 79-94.
DOI:10.1016/j.cattod.2004.12.019

[52] P. Stoltze and J. K. Nørskov, Bridging the "pressure gap" between ultrahigh-vacuum surface physics and high-pressure catalysis, Phys. Rev. Lett., 1985, 55, 2502-5.
DOI:10.1103/PhysRevLett.55.2502

[53] H. J. Freund, H. Kuhlenbeck, J. Libuda, G. Rupprechter, M. Baumer and H. Hamann, Bridging the pressure and materials gaps between catalysis and surface science: Clean and modified oxide surfaces, Top. Catal., 2001, 15, 201-209.
DOI:10.1023/A:1016686322301

[54] C. J. Elsevier, NMR at elevated gas pressures and its application to homogeneous catalysis, J. Mol. Catal., 1994, 92, 285-97.
DOI:10.1016/0304-5102(94)00084-0

[55] B. M. Weckhuysen, Snapshots of a working catalyst: Possibilities and limitations of in situ spectroscopy in the field of heterogeneous catalysis, Chem. Commun., 2002, 97-110.
DOI:10.1039/b107686h

[56] A. C. Dimian, Integrated design and simulation of chemical processes; Elsevier, Amsterdam, 2003, ISBN: 0444829962.

[57] E. Burello and G. Rothenberg, In silico design in homogeneous catalysis using descriptor modelling, Int. J. Mol. Sci., 2006, 7, 375-404.
Free access:PDF file

[58] A. Corma, J. M. Serra, P. Serna and M. Moliner, Integrating high-throughput characterization into combinatorial heterogeneous catalysis: unsupervised construction of quantitative structure/property relationship models, J. Catal., 2005, 232, 335-341.
DOI:10.1016/j.jcat.2005.03.019

[59] E. Burello, D. Farrusseng and G. Rothenberg, Combinatorial explosion in homogeneous catalysis: Screening 60,000 cross-coupling reactions, Adv. Synth. Catal., 2004, 346, 1844-1853.
DOI:10.1002/adsc.200404170

[60] C. Klanner, D. Farrusseng, L. Baumes, M. Lengliz, C. Mirodatos and F. Schueth, The development of descriptors for solids: Teaching "catalytic intuition" to a computer, Angew. Chem. Int. Ed., 2004, 43, 5347-5349.
DOI:10.1002/anie.200460731

[61] G. Rothenberg, J. A. Hageman, F. Clerc, H.-W. Fr?hauf and J. A. Westerhuis, How to find the best homogeneous catalyst, Chem. Ind. (CRC Press), Catal. Org. React., 2006, 115, 261-270.
Free access: PDF file

[62] M. Aucott, M. McLinden and M. Winka, Release of mercury from broken fluorescent bulbs, J. Air Waste Manag. Assoc., 2003, 53, 143-51.
DOI: n/a

[63] F. Naud, C. Malan, F. Spindler, C. Ruggeberg, A. T. Schmidt and H.-U. Blaser, Ru-(phosphine-oxazoline) complexes as effective, industrially viable catalysts for the enantioselective hydrogenation of aryl ketones, Adv. Synth. Catal., 2006, 348, 47-50.
DOI:10.1002/adsc.200505246

[64] A. Ault, The monosodium glutamate story: The commercial production of MSG and other amino acids, J. Chem. Educ., 2004, 81, 347-355.
DOI: n/a




For comments on the site's content, please e-mail feedback@catalysisbook.org.

If you have problems viewing this page or downloading the files, contact our webmaster.



Last updated on January 21, 2008.