References for Chapter 2: The basics of catalysis

[1] P. W. Atkins, Physical Chemistry; Oxford University Press, Oxford, 1994, ISBN 0-19-855730-2.

[2] H. S. Fogler, Elements of Chemical Reaction Engineering; Prentice-Hall, London, 1992, ISBN 0-13-253220-4.

[3] O. Levenspiel, Chemical Reaction Engineering; Wiley, New York, 1999, ISBN 0-471-25424-X.

[4] G. Donati and R. Paludetto, Batch and semi-batch catalytic reactors (from theory to practice), Catalysis Today, 1999, 52, 183-195.
DOI:10.1016/S0920-5861(99)00075-9

[5] S. Arrhenius, On the theory of chemical reaction velocity, Zeit. phys. Chem., 1899, 28, 317.
DOI:n/a

[6] H. Eyring, The activated complex and the absolute rate of chemical reactions, Chem. Rev., 1935, 17, 65-77.
DOI:10.1021/cr60056a006

[7] K. J. Laidler and A. Tweedale, Current status of Eyring's rate theory, Adv. Chem. Phys., 1971, 21, 113-25.
DOI:10.1002/9780470143698.ch9

[8] N. A. Koryabkina, A. A. Phatak, W. F. Ruettinger, R. J. Farrauto and F. H. Ribeiro, Determination of kinetic parameters for the water-gas shift reaction on copper catalysts under realistic conditions for fuel cell applications, J. Catal., 2003, 217, 233-239.
DOI:10.1016/S0021-9517(03)00050-2

[9] K. J. Laidler and S. Glasstone, Rate, order, and molecularity in chemical kinetics, J. Chem. Educ., 1948, 25, 383-7.
DOI:n/a

[10] L. M. Babcock and G. E. Streit, third-body effects in termolecular reactions. Halide ion addition to boron trifluoride and boron trichloride, J. Phys. Chem., 1984, 88, 5025-5031.
DOI:10.1021/j150665a047

[11] R. Patrick and D. M. Golden, Termolecular reactions of alkali metal atoms with oxygen and hydroxyl, Int. J. Chem. Kinet., 1984, 16, 1567-74.
DOI:10.1002/kin.550161210

[12] S. L. Kiperman, Kinetic models of heterogeneous catalytic reactions, Russ. Chem. Bull., 1991, 40, 2350-2365.
DOI:10.1007/BF00959702

[13] A. Radzicka and R. Wolfenden, A proficient enzyme, Science, 1995, 267, 90-3.
DOI:10.1126/science.7809611

[14] J. K. Lee and K. N. Houk, A proficient enzyme revisited: the predicted mechanism for orotidine monophosphate decarboxylase, Science, 1997, 276, 942-5.
DOI:10.1126/science.276.5314.942

[15] D. Y. Murzin, On Surface Heterogeneity and Catalytic Kinetics, Ind. Eng. Chem. Res., 2005, 44, 1688-1697.
DOI:10.1021/ie049044x

[16] A. V. Petukhov, Effect of molecular mobility on kinetics of an electrochemical Langmuir-Hinshelwood reaction, Chem. Phys. Lett., 1997, 277, 539-544.
DOI:10.1016/S0009-2614(97)00916-0

[17] C. Jimenez, F. J. Romero and J. P. Gomez, Isomerization of paraffins, Recent Res. Dev. Pure Appl. Chem., 2001, 5, 1-21.
DOI:10.1002/chin.200322290

[18] I. V. Babich and J. A. Moulijn, Science and technology of novel processes for deep desulfurization of oil refinery streams: A review, Fuel, 2003, 82, 607-631.
DOI:10.1016/S0016-2361(02)00324-1

[19] L. Michaelis and M. L. Menten, Kinetics of Invertase Action, Biochem. Zeitsch., 1913, 49, 333-69.
DOI:n/a

[20] J. E. Dowd and D. S. Riggs, A comparison of estimates of Michaelis-Menten kinetic constants from various linear transformations, J. Biol. Chem., 1965, 240, 863-9.
DOI:n/a

[21] G. L. Atkins and I. A. Nimmo, A comparison of seven methods for fitting the Michaelis-Menten equation, Biochem. J., 1975, 149, 775-7.
DOI:n/a

[22] H. Lineweaver and D. Burk, Determination of enzyme dissociation constants, J. Am. Chem. Soc., 1934, 56, 658-66.
DOI:10.1021/ja01318a036

[23] G. S. Eadie, The inhibition of cholinesterase by physostigmine and prostigmine, J. Biol. Chem., 1942, 146, 85-93.
DOI:n/a

[24] B. H. Hofstee, Non-inverted versus inverted plots in enzyme kinetics, Nature, 1959, 184, 1296-8.
DOI:10.1038/1841296b0

[25] I. E. Frank, Modern nonlinear regression methods, Chemom. Intell. Lab. Syst., 1995, 27, 1-19.
DOI:10.1016/0169-7439(95)80003-R

[26] T. T. Simopoulos and W. P. Jencks, Alkaline phosphatase is an almost perfect enzyme, Biochemistry, 1994, 33, 10375-80.
DOI:10.1021/bi00200a018

[27] D. Iron, H. F. M. Boelens, J. A. Westerhuis and G. Rothenberg, Kinetic Studies of Cascade Reactions in High-Throughput Systems, Anal. Chem., 2003, 75, 6701-6707.
DOI:10.1021/ac034719b

[28] V. M. Wall, A. Eisenstadt, D. J. Ager and S. A. Laneman, The Heck reaction and cinnamic acid synthesis by heterogeneous catalysis palladium on carbon catalyst gives improved production, Platinum Met. Rev., 1999, 43, 138-145.
DOI: [29] S. Mukhopadhyay, G. Rothenberg, A. Joshi, M. Baidossi and Y. Sasson, Heterogeneous palladium-catalyzed Heck reaction of aryl chlorides and styrene in water under mild conditions, Adv. Synth. Catal., 2002, 344, 348-354.
DOI:
10.1002/1615-4169(200206)344:3/4<348::AID-ADSC348>3.0.CO;2-K

[30] I. P. Beletskaya and A. V. Cheprakov, The Heck reaction as a sharpening stone of palladium catalysis, Chem. Rev., 2000, 100, 3009-3066.
DOI:10.1021/cr9903048

[31] G. Rothenberg, S. C. Cruz, G. P. F. Van Strijdonck and H. C. J. Hoefsloot, Detailed mechanistic studies using in situ spectroscopic analysis: a look at little-known regions of the Heck reaction, Adv. Synth. Catal., 2004, 346, 467-473.
DOI:10.1002/adsc.200303163

[32] R. B. Grossman, The Art of Writing Reasonable Organic Reaction Mechanisms; Springer, 2003, ISBN 0-387-95468-6.

[33] F. P. Guengerich, J. A. Krauser and W. W. Johnson, Rate-limiting steps in oxidations catalyzed by rabbit cytochrome P450 1A2, Biochemistry, 2004, 43, 10775-10788.
DOI:10.1021/bi0491393

[34] J. A. Westerhuis, H. F. M. Boelens, D. Iron and G. Rothenberg, Model Selection and Optimal Sampling in High-Throughput Experimentation, Anal. Chem., 2004, 76, 3171-3178.
DOI:10.1021/ac035542o

[35] R. L. Tranter, Design and analysis in chemical research; CRC Press, Sheffield, 2000, ISBN 1-85075-994-4.

[36] W. Keim, Nickel hydrides: catalysis in oligomerization and polymerization reactions of olefins, Ann. N.Y. Acad. Sci., 1983, 415, 191-200.
DOI:n/a

[37] U. Müller, W. Keim, C. Krüger and P. Betz, [{Ph2PCH2C(CF3)2O}NiH(PCy3)]: Support for a Nickel Hydride Mechanism in Ethene Oligomerization, Angew. Chem. Int. Ed. Engl., 1989, 28, 1011-1013.
DOI:10.1002/anie.198910111

[38] M. S. Kharasch, R. C. Seyler and F. R. Mayo, Coördination Compounds of Palladous Chloride, J. Am. Chem. Soc., 1938, 60, 882-884.
DOI:10.1021/ja01271a035

[39] A. Logadottir, T. H. Rod, J. K. Norskov, B. Hammer, S. Dahl and C. J. H. Jacobsen, The Bronsted-Evans-Polanyi Relation and the Volcano Plot for Ammonia Synthesis over Transition Metal Catalysts, J. Catal., 2001, 197, 229-231.
DOI:10.1006/jcat.2000.3087

[40] M. M. Jaksic, Hypo–hyper-d-electronic interactive nature of interionic synergism in catalysis and electrocatalysis for hydrogen reactions, Int. J. Hydr. Energy, 2001, 26, 559–578.
DOI:10.1016/S0360-3199(00)00120-8

[41] M. S. Whittingham, Volcano plots and cyclohexane dehydrogenation, J. Catal., 1977, 50, 549-50.
DOI:10.1016/0021-9517(77)90067-7

[42] R. R. Chianelli, T. A. Pecorado, T. R. Halbert, W.-H. Pan and E. I. Stiefel, Transition metal sulfide catalysis: Relation of the synergic systems to the periodic trends in hydrodesulfurization, J. Catal., 1984, 86, 226-230.
DOI:10.1016/0021-9517(84)90366-X

[43] J. A. Moulijn, A. E. van Diepen and F. Kapteijn, Catalyst deactivation: is it predictable? What to do?, Appl. Catal. A: Gen., 2001, 212, 3-16.
DOI:10.1016/S0926-860X(00)00842-5

[44] P. W. N. M. van Leeuwen, Decomposition pathways of homogeneous catalysts, Appl. Catal. A: Gen., 2001, 212, 61-81.
DOI:10.1016/S0926-860X(00)00844-9

[45] T. J. Collins, TAML Oxidant Activators: A New Approach to the Activation of Hydrogen Peroxide for Environmentally Significant Problems, Acc. Chem. Res., 2002, 35, 782-790.
DOI:10.1021/ar010079s

[46] M. J. Bartos, S. W. Gordon-Wylie, B. G. Fox, L. J. Wright, S. T. Weintraub, K. E. Kauffmann, E. Münck, K. L. Kostka, E. S. Uffelman, C. E. F. Rickard, K. R. Noon and T. J. Collins, Designing ligands to achieve robust oxidation catalysts. Iron based systems, Coord. Chem. Rev., 1998, 174, 361-390.
DOI:10.1016/S0010-8545(98)00142-8

[47] T. J. Collins, Designing Ligands for Oxidizing Complexes, Acc. Chem. Res., 1994, 27, 279-85.
DOI:10.1021/ar00045a004

[48] C. H. Bartholomew, Mechanisms of catalyst deactivation, Appl. Catal. A: Gen., 2001, 212, 17-60.
DOI:10.1016/S0926-860X(00)00843-7

[49] G. C. Koltsakis and A. M. Stamatelos, Catalytic automotive exhaust aftertreatment, Prog. Ener. Combust. Sci., 1997, 23, 1-39.
DOI:10.1016/S0360-1285(97)00003-8

[50] P. Forzatti and L. Lietti, Catalyst deactivation, Catalysis Today, 1999, 52, 165-181.
DOI:10.1016/S0920-5861(99)00074-7

[51] P. L. J. Gunter, J. W. Niemantsverdriet, F. H. Ribeiro and G. A. Somorjai, Surface science approach to modeling supported catalysts, Catal. Rev. - Sci. Eng., 1997, 39, 77-168.
DOI:10.1080/01614949708006469

[52] A. Y. Stakheev and L. M. Kustov, Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s, Appl. Catal. A: Gen., 1999, 188, 3-35.
DOI:10.1016/S0926-860X(99)00232-X

[53] A. K. Datye, Q. Xu, K. C. Kharas and J. M. McCarty, Particle size distributions in heterogeneous catalysts: What do they tell us about the sintering mechanism?, Catalysis Today, 2006, 111, 59-67.
DOI:10.1016/j.cattod.2005.10.013

[54] H. R. Arias, Luminal and non-luminal non-competitive inhibitor binding sites on the nicotinic acetylcholine receptor, Molec. Membr. Biol., 1996, 13, 1-17.
DOI:n/a

[55] N. H. Greig, K. Sambamurti, Q.-s. Yu, A. Brossi, G. B. Bruinsma and D. K. Lahiri, An overview of phenserine tartrate, a novel acetylcholinesterase inhibitor for the treatment of Alzheimer's disease, Curr. Alzheimer Res., 2005, 2, 281-290.
DOI:n/a

[56] J. P. Boitiaux, J. Cosyns and F. Verna, Poisoning of hydrogenation catalysts. How to cope with this general problem?, Stud. Surf. Sci. Catal., 1987, 34, 105-23.
DOI:n/a

[57] M. Shelef, K. Otto and N. C. Otto, Poisoning of automotive catalysts, Adv. Catal., 1978, 27, 311-65.
DOI:n/a




For comments on the site's content, please e-mail feedback@catalysisbook.org.

If you have problems viewing this page or downloading the files, contact our webmaster.



Last updated on January 21, 2008.