References for Chapter 3: Homogeneous catalysis

[1] J. G. Anderson, J. J. Margitan and D. H. Stedman, Atomic chlorine and the chlorine monoxide radical in the stratosphere: three in situ observations, Science, 1977, 198, 501-3.
DOI:10.1126/science.198.4316.501

[2] M. J. Rycroft, Where has all the ozone gone?, Phys. Bull., 1987, 38, 410-11.
DOI:n/a

[3] G. Rothenberg, A. P. Downie, C. L. Raston and J. L. Scott, Understanding Solid/Solid Organic Reactions, J. Am. Chem. Soc., 2001, 123, 8701-8708.
DOI:10.1021/ja0034388

[4] A. M. Trzeciak and J. J. Ziolkowski, Perspectives of rhodium organometallic catalysis. Fundamental and applied aspects of hydroformylation, Coord. Chem. Rev., 1999, 190-192, 883-900.
DOI:10.1016/S0010-8545(99)00127-7

[5] L. A. van der Veen, P. C. J. Kamer and P. W. N. M. van Leeuwen, New Phosphacyclic Diphosphines for Rhodium-Catalyzed Hydroformylation, Organometallics, 1999, 18, 4765-4777.
DOI:10.1021/om990523j

[6] W. S. Knowles, Asymmetric Hydrogenations (Nobel Lecture), Angew. Chem. Int. Ed., 2002, 41, 1998-2007.
DOI:10.1002/1521-3773(20020617)41:12<1998::AID-ANIE1998>3.0.CO;2-8

[7] R. Noyori, Asymmetric Catalysis: Science and Opportunities (Nobel Lecture 2001), Adv. Synth. Catal., 2003, 345, 15-32.
DOI:10.1002/adsc.200390002

[8] K. B. Sharpless, Searching for New Reactivity (Nobel Lecture), Angew. Chem. Int. Ed., 2002, 41, 2024-2032.
DOI:10.1002/1521-3773(20020617)41:12<2024::AID-ANIE2024>3.0.CO;2-O

[9] Y. Chauvin, Olefin Metathesis: The Early Days (Nobel Lecture), Angew. Chem. Int. Ed., 2006, 45, 3740-3747.
DOI:10.1002/anie.200601234

[10] R. H. Grubbs, Olefin-Metathesis Catalysts for the Preparation of Molecules and Materials (Nobel Lecture), Angew. Chem. Int. Ed., 2006, 45, 3760-3765.
DOI:10.1002/anie.200600680

[11] R. R. Schrock, Multiple Metal-Carbon Bonds for Catalytic Metathesis Reactions (Nobel Lecture), Angew. Chem. Int. Ed., 2006, 45, 3748-3759.
DOI:10.1002/anie.200600085

[12] S. Niu and M. B. Hall, Theoretical Studies on Reactions of Transition-Metal Complexes, Chem. Rev., 2000, 100, 353-406.
DOI:10.1021/cr980404y

[13] J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic chemistry; Harper Collins, New York, 1993, ISBN 0-06-042995-X.

[14] R. H. Crabtree, The Organometallic Chemistry of the Transition Metals; Wiley-VCH, Weinheim, 2005, ISBN 0-471-66256-9.

[15] L. Vaska, Reversible activation of covalent molecules by transition-metal complexes. The role of the covalent molecule, Acc. Chem. Res., 1968, 1, 335-344.
DOI:10.1021/ar50011a003

[16] L. Vaska and J. W. DiLuzio, Carbonyl and hydrido-carbonyl complexes of iridium by reaction with alcohols-hydrido complexes by reaction with acid, J. Am. Chem. Soc., 1961, 83, 2784-5.
DOI:10.1021/ja01473a054

[17] L. Vaska and J. W. DiLuzio, Complex carbonyl hydrides of osmium and ruthenium, J. Am. Chem. Soc., 1961, 83, 1262-3.
DOI:10.1021/ja01466a067

[18] L. Vaska and J. W. DiLuzio, The origin of hydrogen in metal hydride complexes formed by reaction with alcohols, J. Am. Chem. Soc., 1962, 84, 4989-90.
DOI:10.1021/ja00883a081

[19] C. R. Baar, H. A. Jenkins, J. J. Vittal, G. P. A. Yap and R. J. Puddephatt, Stereoselectivity in Organometallic Reactions: Oxidative Addition of Alkyl Halides to Platinum(II), Organometallics, 1998, 17, 2805-2818.
DOI:10.1021/om980065z

[20] C. Amatore and A. Jutand, Anionic Pd(0) and Pd(II) intermediates in palladium-catalyzed Heck and cross-coupling reactions, Acc. Chem. Res., 2000, 33, 314-321.
DOI:10.1021/ar980063a

[21] Y. Yamamoto, T. Arakawa and K. Itoh, Synthesis of Naphthoquinone-Fused Cyclobutadiene Ruthenium Complexes, Organometallics, 2004, 23, 3610-3614.
DOI:10.1021/om049732g

[22] A. Gillie and J. K. Stille, Mechanisms of 1,1-reductive elimination from palladium, J. Am. Chem. Soc., 1980, 102, 4933-4941.
DOI:10.1021/ja00535a018

[23] B. Rybtchinski and D. Milstein, Metal insertion into C-C bonds in solution, Angew. Chem. Int. Ed., 1999, 38, 871-883.
DOI:10.1002/(SICI)1521-3773(19990401)38:7<870::AID-ANIE870>3.0.CO;2-3

[24] B. A. Arndtsen, R. G. Bergman, T. A. Mobley and T. A. Peterson, Selective Intermolecular Carbon-Hydrogen Bond Activation by Synthetic Metal Complexes in Homogeneous Solution, Acc. Chem. Res., 1995, 28, 154-162.
DOI:10.1021/ar00051a009

[25] K. Godula and D. Sames, C-H Bond Functionalization in Complex Organic Synthesis, Science, 2006, 312, 67-72.
DOI:10.1126/science.1114731

[26] G. A. Rupprecht, L. W. Messerle, J. D. Fellmann and R. R. Schrock, Multiple metal-carbon bonds. 15. Octahedral alkylidene complexes of niobium and tantalum by ligand-promoted a abstraction, J. Am. Chem. Soc., 1980, 102, 6236-44.
DOI:10.1021/ja00540a010

[27] F. Basuli, B. C. Bailey, J. C. Huffman and D. J. Mindiola, Intramolecular C-H Activation Reactions Derived from a Terminal Titanium Neopentylidene Functionality. Redox-Controlled 1,2-Addition and a-Hydrogen Abstraction Reactions, Organometallics, 2005, 24, 3321-3334.
DOI:10.1021/om049318g

[28] F. Basuli, B. C. Bailey, J. Tomaszewski, J. C. Huffman and D. J. Mindiola, A Terminal and Four-Coordinate Titanium Alkylidene Prepared by Oxidatively Induced a-Hydrogen Abstraction, J. Am. Chem. Soc., 2003, 125, 6052-6053.
DOI:10.1021/ja034786n

[29] W. Weng, L. Yang, B. M. Foxman and O. V. Ozerov, Chelate-Enforced Phosphine Coordination Enables a-Abstraction to Give Zirconium Alkylidenes, Organometallics, 2004, 23, 4700-4705.
DOI:10.1021/om049670u

[30] M. D. Fryzuk, S. S. H. Mao, M. J. Zaworotko and L. R. MacGillivray, The first stable zirconium alkylidene complex formed via a-hydrogen abstraction: synthesis and x-ray crystal structure of [h5-C5H3-1,3-(SiMe2CH2PPri2)2]Zr:CHPh(Cl), J. Am. Chem. Soc., 1993, 115, 5336-7.
DOI:10.1021/ja00065a072

[31] R. R. Schrock, Alkylidene complexes of niobium and tantalum, Acc. Chem. Res., 1979, 12, 98-104.
DOI:n/a

[32] R. R. Schrock, High oxidation state alkylidene and alkylidyne complexes, Chem. Commun., 2005, 2773-2777.
DOI:10.1039/b504541j

[33] R. H. Grubbs, Handbook of Metathesis; Wiley-VCH, Weinheim, 2003, ISBN 3-527-30616-1.

[34] M. E. van der Boom and D. Milstein, Cyclometalated Phosphine-Based Pincer Complexes: Mechanistic Insight in Catalysis, Coordination, and Bond Activation, Chem. Rev., 2003, 103, 1759-1792.
DOI:10.1021/cr960118r

[35] F. Mohr, S. H. Priver, S. K. Bhargava and M. A. Bennett, Ortho-metallated transition metal complexes derived from tertiary phosphine and arsine ligands, Coord. Chem. Rev., 2006, 250, 1851-1888.
DOI:10.1016/j.ccr.2005.10.003

[36] M. W. Avis, M. E. van der Boom, C. J. Elsevier, W. J. J. Smeets and A. L. Spek, Reactions of bis(iminophosphoranes) with palladium(II) dichloride: Metal-induced tautomerization orthopalladation and unexpected platinum-assisted [2+2]cycloaddition of an aryl-nitrile with a phosphinimine moiety, J. Organomet. Chem., 1997, 527, 263-276.
DOI:10.1016/S0022-328X(96)06684-3

[37] J. Dupont, S. Consorti Crestina and J. Spencer, The potential of palladacycles: more than just precatalysts, Chem. Rev., 2005, 105, 2527-71.
DOI:10.1021/cr030681r

[38] V. Ritleng, C. Sirlin and M. Pfeffer, Ru-, Rh-, and Pd-Catalyzed C-C Bond Formation Involving C-H Activation and Addition on Unsaturated Substrates: Reactions and Mechanistic Aspects, Chem. Rev., 2002, 102, 1731-1770.
DOI:10.1021/cr0104330

[39] J. A. Hageman, J. A. Westerhuis, H. W. Frühauf and G. Rothenberg, Design and assembly of virtual homogeneous catalyst libraries - towards in silico catalyst optimisation, Adv. Synth. Catal., 2006, 348, 361-369.
DOI:10.1002/adsc.200505299

[40] T. L. Brown and K. J. Lee, Ligand Steric Properties, Coord. Chem. Rev., 1993, 128, 89-116.
DOI:10.1016/0010-8545(93)80025-Z

[41] C. A. Tolman, Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis, Chem. Rev., 1977, 77, 313-48.
DOI:10.1021/cr60307a002

[42] E. C. Alyea, S. A. Dias, G. Ferguson and R. J. Restivo, Structural Studies of Steric Effects in Phosphine Complexes. Synthesis and Crystal and Molecular Structure of the Dinitrato( tricyclohexylphosphine)mercury (II) Dimer, Inorg. Chem., 1977, 16, 2329 - 2334.
DOI:10.1021/ic50175a036

[43] E. C. Alyea, S. A. Dias, G. Ferguson and M. Parvez, Structural studies of steric effects in phosphine complexes. Part 6. The synthesis, characterization and molecular structure of the dinitro(trimesitylphosphine)mercury(II)dimer, Inorg. Chim. Acta, 1979, 37, 45-52.
DOI:10.1016/S0020-1693(00)95516-6

[44] A. Immirzi and A. Musco, A method to measure the size of phosphorus ligands in coordination complexes, Inorg. Chim. Acta, 1977, 25, L41-L42.
DOI:10.1016/S0020-1693(00)95635-4

[45] D. P. White, J. C. Anthony and A. O. Oyefeso, Computational measurement of steric effects: the size of organic substituents computed by ligand repulsive energies, J. Org. Chem., 1999, 64, 7707-7716.
DOI:10.1021/jo982405w

[46] I. A. Guezi and M. Wendt, An improved method for the computation of ligand steric effects based on solid angles, Dalton Trans., 2006, 3991-3999.
DOI:10.1039/b605102b

[47] D. White, B. C. Taverner, P. G. L. Leach and N. J. Coville, Quantification of Substituent and Ligand Size by the Use of Solid Angles, J. Comp. Chem., 1993, 14, 1042-1049.
DOI:10.1002/jcc.540140906

[48] D. White and N. J. Coville, Quantification of steric effects in organometallic chemistry, in Series Quantification of steric effects in organometallic chemistry, 1994, vol. 36, pp. 95-158.

[49] V. I. Korsunsky, The investigation of structure of heavy metal clusters and polynuclear complexes in powder samples with the radial distribution function method, Coord. Chem. Rev., 2000, 199, 55-87.
DOI:10.1007/s10947-005-0010-0

[50] D. White, B. C. Taverner, N. J. Coville and P. W. Wade, Solid Angles .3. The Role of Conformers in Solid Angle Calculations, J. Organomet. Chem., 1995, 495, 41-51.
DOI:10.1016/0022-328X(95)05441-Q

[51] L. W. Gosser and C. A. Tolman, New three-coordinate complex of nickel(0). Tris(tri-o-tolyl phosphite)nickel, Inorg. Chem., 1970, 9, 2350-3.
DOI:10.1021/ic50092a030

[52] W. C. Seidel and C. A. Tolman, Ethylene [bis(tri-o-tolyl phosphite)] nickel(0), Inorg. Chem., 1970, 9, 2354-7.
DOI:10.1021/ic50092a031

[53] P. W. N. M. van Leeuwen, P. C. J. Kamer, J. N. H. Reek and P. Dierkes, Ligand Bite Angle Effects in Metal-catalyzed C-C Bond Formation, Chem. Rev., 2000, 100, 2741-2769.
DOI:10.1021/cr9902704

[54] P. Dierkes and P. W. N. M. van Leeuwen, The bite angle makes the difference: a practical ligand parameter for diphosphine ligands, J. Chem. Soc., Dalton Trans., 1999, 1519-1530.
DOI:10.1039/a807799a

[55] C. P. Casey, G. T. Whiteker, M. G. Melville, L. M. Petrovich, J. A. Gavney, Jr. and D. R. Powell, Diphosphines with natural bite angles near 120 Deg increase selectivity for n-aldehyde formation in rhodium-catalyzed hydroformylation, J. Am. Chem. Soc., 1992, 114, 5535-43.
DOI:10.1021/ja00040a008

[56] P. C. J. Kamer, J. N. H. Reek and P. W. N. M. van Leeuwen, Designing ligands with the right bite, Chemtech, 1998, 28, 27-33.
DOI:n/a

[57] P. C. J. Kamer, P. W. N. van Leeuwen and J. N. H. Reek, Wide bite angle diphosphines: Xantphos ligands in transition metal complexes and catalysis, Accounts of Chemical Research, 2001, 34, 895-904.
DOI:10.1021/ar000060

[58] K. A. Lenero, M. Kranenburg, Y. Guari, P. C. J. Kamer, P. W. N. M. van Leeuwen, S. Sabo-Etienne and B. Chaudret, Ruthenium dihydrogen complexes with wide bite angle diphosphines, Inorg. Chem., 2003, 42, 2859-2866.
DOI:10.1021/ic020577c

[59] P. van Leeuwen, P. C. J. Kamer and J. N. H. Reek, The bite angle makes the catalyst, Pure and Applied Chemistry, 1999, 71, 1443-1452.
DOI:10.1351/pac199971081443

[60] M. Kranenburg, Y. E. M. van der Burgt, P. C. J. Kamer, P. W. N. M. van Leeuwen, K. Goubitz and J. Fraanje, New Diphosphine Ligands Based on Heterocyclic Aromatics Inducing Very High Regioselectivity in Rhodium-Catalyzed Hydroformylation: Effect of the Bite Angle, Organometallics, 1995, 14, 3081-9.
DOI:10.1021/om00006a057

[61] L. Dahlenburg, P-modular homochiral bis(phosphines) with 1,2-disubstituted cyclopentane backbones in asymmetric hydrogenation, Eur. J. Inorg. Chem., 2003, 2733-2747.
DOI:10.1002/ejic.200200697

[62] W. S. Knowles, Asymmetric hydrogenation, Acc. Chem. Res., 1983, 16, 106-112.
DOI:10.1021/ar00087a006

[63] P. Sudhakar and G. Sundararajan, Tuning the reactivity of N,O,O,O-non-metallocene catalysts for a-olefin polymerization: Issues related to ligand symmetry and derivatization, Macromol. Rapid Commun., 2005, 26, 1854-1859.
DOI:10.1002/marc.200500565

[64] C. A. Tolman, Olefin complexes of nickel(0). III. Formation constants of (olefin)bis(tri-o-tolyl phosphite)nickel complexes, J. Am. Chem. Soc., 1974, 96, 2780-9.
DOI:10.1021/ja00816a020

[65] C. A. Tolman, Electron donor-acceptor properties of phosphorus ligands. Substituent additivity, J. Am. Chem. Soc., 1970, 92, 2953-6.
DOI:10.1021/ja00713a006

[66] K. Mashima and A. Nakamura, Agostic interaction in early transition metal alkyls and their role in catalytic activity for olefin polymerizations, J. Organomet. Chem., 1992, 428, 49-58.
DOI:10.1016/0022-328X(92)83218-7

[67] M. Brookhart and M. L. H. Green, Carbon-hydrogen-transition metal bonds, J. Organomet. Chem., 1983, 250, 395-408.
DOI:10.1016/0022-328X(83)85065-7

[68] F. M. Conroy-Lewis, L. Mole, A. D. Redhouse, S. A. Litster and J. L. Spencer, Synthesis of coordinatively unsaturated diphosphine nickel(II) and palladium(II) b-agostic ethyl cations: X-ray crystal structure of [Ni[tert-Bu2P(CH2)2PBu-tert2](C2H5)][BF4], J. Chem. Soc., Chem. Commun., 1991, 1601-3.
DOI:10.1039/C39910001601

[69] M. L. H. Green, A. K. Hughes, N. A. Popham, A. H. H. Stephens and L. L. Wong, Nuclear magnetic resonance studies on partially deuteriated transition metal-methyl derivatives, J. Chem. Soc., Dalton Trans., 1992, 3077-82.
DOI:10.1039/DT9920003077

[70] W. Scherer and G. S. McGrady, Agostic interactions in d0 metal alkyl complexes, Angew. Chem. Int. Ed., 2004, 43, 1782-1806.
DOI:10.1002/anie.200200548

[71] S. C. Stinson, Chem. Eng. News, 1992, 70, 46.
DOI:n/a

[72] H. Nozaki, S. Moriuti, M. Yamabe and R. Noyori, Reactions of diphenyldiazomethane in the presence of bis(acetylacetonato)copper(II). Modified diphenylmethylene reactions, Tetrahedron Lett., 1966, 59-63.
DOI:10.1016/S0040-4039(01)99630-3

[73] H. Nozaki, H. Takaya, S. Moriuti and R. Noyori, Homogeneous catalysis in the decomposition of diazo compounds by copper chelates. Asymmetric carbenoid reactions, Tetrahedron, 1968, 24, 3655-69.
DOI:10.1016/S0040-4020(01)91998-2

[74] H. Nozaki, S. Moriuti, H. Takaya and R. Noyori, Asymmetric induction in carbenoid reactions by means of a dissymmetric copper chelate, Tetrahedron Lett., 1966, 5239-44.
DOI:10.1016/S0040-4039(01)89263-7

[75] T. Aratani, Catalytic asymmetric synthesis of cyclopropanecarboxylic acids: an application of chiral copper carbenoid reaction, Pure Appl. Chem., 1985, 57, 1839-44.
DOI:n/a

[76] H. B. Kagan and D.-T. Phat, Asymmetric catalytic reduction with transition metal complexes. I. Catalytic system of rhodium(I) with (-)-2,3-0-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane, a new chiral diphosphine, J. Am. Chem. Soc., 1972, 94, 6429-6433.
DOI:10.1021/ja00773a028

[77] H. Takaya, K. Mashima, K. Koyano, M. Yagi, H. Kumobayashi, T. Taketomi, S. Akutagawa and R. Noyori, Practical synthesis of (R)- or (S)-2,2'-bis(diarylphosphino)-1,1'-binaphthyls (BINAPs), J. Org. Chem., 1986, 51, 629-635.
DOI:10.1021/jo00355a012

[78] Y. Masashi and R. Noyori, Ab initio molecular orbital study on rhodium(I)-catalyzed isomerization of allylic amines to enamines, Organometallics, 1992, 11, 3167-3169.
DOI:10.1021/om00046a005

[79] E. F. Lutz, Shell Higher Olefins Process, J. Chem. Educ., 1986, 63, 202-203.
DOI:n/a

[80] W. Keim, Mechanistic considerations for the linear carbon-carbon linkage of monoolefins, New J. Chem., 1987, 11, 531-4.
DOI:n/a

[81] W. Keim, Organometallic complexes as catalyst precursors: Value and usefulness, New J. Chem., 1994, 18, 93-6.
DOI:n/a

[82] M. Peuckert and W. Keim, A new nickel complex for the oligomerization of ethylene, Organometallics, 1983, 2, 594-7.
DOI:10.1021/om00077a004

[83] W. Keim, Organometallic complexes as catalyst precursors: Advantages and disadvantages, J. Mol. Catal., 1989, 52, 19-25.
DOI:10.1016/0304-5102(89)80079-3

[84] W. Keim, A. Behr, B. Gruber, B. Hoffmann, F. H. Kowaldt, U. Kuerschner, B. Limbaecker and F. P. Sistig, Reactions of chelate ylides with nickel(0) complexes, Organometallics, 1986, 5, 2356-9.
DOI:10.1021/om00142a031

[85] J. Smidt, W. Hafner, R. Jira, J. Sedlmeier, R. Sieber, R. Ruttinger and H. Kojer, Catalytic reactions of olefins on compounds of the platinum group, Angew. Chem., 1959, 71, 176-82.
DOI:10.1002/ange.19590710503

[86] J. Smidt and R. Sieber, Reactions of palladium dichloride with olefinic double bonds, Angew. Chem., 1959, 71, 626.
DOI:10.1002/ange.19590711911

[87] I. I. Moiseev, O. G. Levanda and M. N. Vargaftik, Kinetics of olefin oxidation by tetrachloropalladate in aqueous solution, J. Am. Chem. Soc., 1974, 96, 1003-7.
DOI:10.1021/ja00811a009

[88] J. Smidt, W. Hafner, R. Jira, R. Sieber, J. Sedlmeier and A. Sabel, The oxidation of olefins with palladium chloride catalysts, Angew. Chem. Int. Ed. Engl., 1962, 1, 80-88.
DOI:10.1002/anie.196200801

[89] J. M. Takacs and X.-t. Jiang, The Wacker reaction and related alkene oxidation reactions, Curr. Org. Chem., 2003, 7, 369-396.
DOI:10.1002/chin.200333264

[90] J. E. Bäckvall, B. Ĺkermark and S. O. Ljunggren, Stereochemistry and mechanism for the palladium(II)-catalyzed oxidation of ethene in water (the Wacker process), J. Am. Chem. Soc., 1979, 101, 2411-2416.
DOI:10.1021/ja00503a029

[91] D. J. Nelson, R. Li and C. Brammer, Correlation of relative rates of PdCl2 oxidation of functionalized acyclic alkenes versus alkene ionization potentials, HOMOs, and LUMOs, J. Am. Chem. Soc., 2001, 123, 1564-1568.
DOI:10.1021/ja002190j

[92] O. Hamed, P. M. Henry and C. Thompson, Palladium(II)-catalyzed exchange and isomerization reactions. 17. Exchange of chiral allyl alcohols with hydroxide, methoxide, and phenyl at high [Cl-]. Stereochemistry of the Wacker reaction, J. Org. Chem., 1999, 64, 7745-7750.
DOI:10.1021/jo9906274

[93] C. A. Tolman, Steric and electronic effects in olefin hydrocyanation at Du Pont, J. Chem. Educ., 1986, 63, 199-201.
DOI:n/a

[94] C. A. Tolman, The 16- and 18-electron rule in organometallic chemistry and homogeneous catalysis, Chem. Soc. Rev., 1972, 1, 337-53.
DOI:10.1039/CS9720100337

[95] R. J. McKinney, Kinetic control in catalytic olefin isomerization. An explanation for the apparent contrathermodynamic isomerization of 3-pentenenitrile, Organometallics, 1985, 4, 1142-1143.
DOI:10.1021/om00125a038

[96] W. Goertz, W. Keim, D. Vogt, U. Englert, M. D. K. Boele, L. A. van der Veen, P. C. J. Kamer and P. W. N. M. van Leeuwen, Electronic effects in the nickel-catalyzed hydrocyanation of styrene applying chelating phosphorus ligands with large bite angles, J. Chem. Soc., Dalton Trans., 1998, 2981-2988.
DOI:10.1039/a802269k

[97] Z. Freixa and P. W. N. M. van Leeuwen, Bite angle effects in diphosphine metal catalysts: Steric or electronic?, Dalton Trans., 2003, 1890-1901.
DOI:10.1039/b300322c

[98] H.-U. Blaser, The chiral switch of (S)-metolachlor: A personal account of an industrial odyssey in asymmetric catalysis, Adv. Synth. Catal., 2002, 344, 17-31.
DOI:10.1002/1615-4169(200201)344:1<17::AID-ADSC17>3.0.CO;2-8

[99] H.-U. Blaser and F. Spindler, Enantioselective catalysis for agrochemicals. The case histories of (S)-metolachlor, (R)-metalaxyl and clozylacon, Top. Catal., 1998, 4, 275-282.
DOI:10.1023/A:1019164928084

[100] Y. Ng Cheong Chan and J. A. Osborn, Iridium(III) hydride complexes for the catalytic enantioselective hydrogenation of imines, J. Am. Chem. Soc., 1990, 112, 9400-1.
DOI:10.1021/ja00181a056

[101] F. Spindler, B. Pugin and H. U. Blaser, New diphosphonioiridium catalysts for the enantioselective hydrogenation of N-arylketimines, Angew. Chem. Int. Ed. Engl., 1990, 29, 558-559.
DOI:10.1002/anie.199005581

[102] F. Spindler, B. Pugin, H.-P. Jalett, H.-P. Buser, U. Pittelkow and H.-U. Blaser, A technically useful catalyst for the homogeneous enantioselective hydrogenation of N-aryl imines: A case study, Chem. Ind. (Dekker) Catal. Org. React., 1996, 68, 153-166.
DOI:n/a

[103] A. Togni, Developing new chiral ferrocenyl ligands for asymmetric catalysis. A personal account, Chimia, 1996, 50, 86-93.
DOI:n/a

[104] A. Togni, Planar-chiral ferrocenes: Synthetic methods and applications, Angew. Chem. Int. Ed. Engl., 1996, 35, 1475-1477.
DOI:10.1002/anie.199614751

[105] E. E. Kwan, Factors affecting the relative efficiency of general acid catalysis, J. Chem. Educ., 2005, 82, 1026-1030.
DOI:n/a

[106] N. E. Leadbeater and M. Marco, Transition-metal-free Suzuki-type coupling reactions, Angew. Chem. Int. Ed., 2003, 42, 1407-1409.
DOI:10.1002/anie.200390362

[107] N. E. Leadbeater and M. Marco, Transition-metal-free Suzuki-type coupling reactions: Scope and limitations of the methodology, J. Org. Chem., 2003, 68, 5660-5667.
DOI:10.1021/jo034230i

[108] N. E. Leadbeater, M. Marco and B. J. Tominack, First examples of transition-metal free Sonogashira-type couplings, Org. Lett., 2003, 5, 3919-3922.
DOI:10.1021/ol035485l

[109] A. Berkessel and H. Gröger, Asymmetric organocatalysis; Wiley-VCH, Weinheim, 2005, ISBN 3-527-30517-3.

[110] P. I. Dalko and L. Moisan, In the golden age of organocatalysis, Angew. Chem. Int. Ed., 2004, 43, 5138-5175.
DOI:10.1002/anie.200400650

[111] B. Westermann, Asymmetric catalytic aza-Henry reactions leading to 1,2-diamines and 1,2-diaminocarboxylic acids, Angew. Chem. Int. Ed., 2003, 42, 151-153.
DOI:10.1002/anie.200390071

[112] A. J. A. Cobb, D. M. Shaw, D. A. Longbottom, J. B. Gold and S. V. Ley, Organocatalysis with proline derivatives: Improved catalysts for the asymmetric Mannich, nitro-Michael and aldol reactions, Org. Biomol. Chem., 2005, 3, 84-96.
DOI:10.1039/b414742a

[113] T. Marcelli, R. N. S. van der Haas, J. H. van Maarseveen and H. Hiemstra, Asymmetric organocatalytic Henry reaction, Angew. Chem. Int. Ed., 2006, 45, 929-931.
DOI:10.1002/ange.200503724

[114] B. Cornils and W. A. Herrmann, Concepts in homogeneous catalysis: The industrial view, J. Catal., 2003, 216, 23-31.
DOI:10.1016/S0021-9517(02)00128-8

[115] D. J. Cole-Hamilton, Homogeneous catalysis - new approaches to catalyst separation, recovery, and recycling, Science, 2003, 299, 1702-1706.
DOI:10.1126/science.1081881

[116] B. M. Bhanage and M. Arai, Catalyst product separation techniques in Heck reaction, Catal. Rev. - Sci. Eng., 2001, 43, 315-344.
DOI:10.1081/CR-100107480

[117] P. G. Jessop, T. Ikariya and R. Noyori, Homogeneous catalysis in supercritical fluids, Chem. Rev., 1999, 99, 475-493.
DOI:10.1021/cr970037a

[118] S. Pereda, S. B. Bottini and E. A. Brignole, Supercritical fluids and phase behavior in heterogeneous gas-liquid catalytic reactions, Appl. Catal. A: Gen., 2005, 281, 129-137.
DOI:10.1016/j.apcata.2004.11.019

[119] P. B. Webb, T. E. Kunene and D. J. Cole-Hamilton, Continuous flow homogeneous hydroformylation of alkenes using supercritical fluids, Green Chem., 2005, 7, 373-379.
DOI:10.1039/b416713a

[120] D. Koch and W. Leitner, Rhodium-catalyzed hydroformylation in supercritical carbon dioxide, J. Am. Chem. Soc., 1998, 120, 13398-13404.
DOI:10.1021/ja980729w

[121] M. F. Sellin, I. Bach, J. M. Webster, F. Montilla, V. Rosa, T. Aviles, M. Poliakoff and D. J. Cole-Hamilton, Hydroformylation of alkenes in supercritical carbon dioxide catalysed by rhodium trialkylphosphine complexes, J. Chem. Soc., Dalton Trans., 2002, 4569-4576.
DOI:10.1039/b207747g

[122] S. Kainz, A. Brinkmann, W. Leitner and A. Pfaltz, Iridium-catalyzed enantioselective hydrogenation of imines in supercritical carbon dioxide, J. Am. Chem. Soc., 1999, 121, 6421-6429.
DOI:10.1021/ja984309i

[123] C. Mueller, M. G. Nijkamp and D. Vogt, Continuous homogeneous catalysis, Eur. J. Inorg. Chem., 2005, 4011-4021.
DOI:10.1002/ejic.200500466

[124] I. F. J. Vankelecom, Polymeric membranes in catalytic reactors, Chem. Rev., 2002, 102, 3779-3810.
DOI:10.1021/cr0103468

[125] E. B. Eggeling, N. J. Hovestad, J. T. B. H. Jastrzebski, D. Vogt and G. van Koten, Phosphino carboxylic acid ester functionalized carbosilane dendrimers: Nanoscale ligands for the Pd-catalyzed hydrovinylation reaction in a membrane reactor, J. Org. Chem., 2000, 65, 8857-8865.
DOI:10.1021/jo000433k

[126] D. de Groot, B. F. M. de Waal, J. N. H. Reek, A. P. H. J. Schenning, P. C. J. Kamer, E. W. Meijer and P. W. N. M. van Leeuwen, Noncovalently functionalized dendrimers as recyclable catalysts, J. Am. Chem. Soc., 2001, 123, 8453-8458.
DOI:10.1021/ja005774u

[127] A. W. Kleij, R. A. Gossage, R. J. M. K. Gebbink, N. Brinkmann, E. J. Reijerse, U. Kragl, M. Lutz, A. L. Spek and G. van Koten, A "dendritic effect" in homogeneous catalysis with carbosilane-supported arylnickel(II) catalysts: Observation of active-site proximity effects in atom-transfer radical addition, J. Am. Chem. Soc., 2000, 122, 12112-12124.
DOI:10.1021/ja0026612

[128] A. Datta, K. Ebert and H. Plenio, Nanofiltration for homogeneous catalysis separation: Soluble polymer-supported palladium catalysts for Heck, Sonogashira, and Suzuki coupling of aryl halides, Organometallics, 2003, 22, 4685-4691.
DOI:10.1021/om0303754

[129] M. an der Heiden and H. Plenio, Homogeneous catalysts supported on soluble polymers: Biphasic Suzuki-Miyaura coupling of aryl chlorides using phase-tagged palladium-phosphine catalysts, Chem. Eur. J., 2004, 10, 1789-1797.
DOI:10.1002/chem.200305562

[130] H. P. Dijkstra, N. Ronde, G. P. M. van Klink, D. Vogt and G. van Koten, Application of a homogeneous dodecakis(NCN-PdII) catalyst in a nanofiltration membrane reactor under continuous reaction conditions, Adv. Synth. Catal., 2003, 345, 364-369.
DOI:10.1002/adsc.200390041

[131] H. P. Dijkstra, C. A. Kruithof, N. Ronde, R. van de Coevering, D. J. Ramon, D. Vogt, G. P. M. van Klink and G. van Koten, Shape-Persistent Nanosize Organometallic Complexes: Synthesis and Application in a Nanofiltration Membrane Reactor, J.Org. Chem., 2003, 68, 675-685.
DOI:10.1021/jo0257602

[132] C. Copéret, M. Chabanas, R. P. Saint-Arroman and J.-M. Basset, Homogeneous and heterogeneous catalysis: Bridging the gap through surface organometallic chemistry, Angew. Chem. Int. Ed., 2003, 42, 156-181.
DOI:10.1002/anie.200390072

[133] S. L. Scott, J. M. Basset, G. P. Niccolai, C. C. Santini, J. P. Candy, C. Lecuyer, F. Quignard and A. Choplin, Surface organometallic chemistry: A molecular approach to surface catalysis, New J. Chem., 1994, 18, 115-22.
DOI:n/a

[134] E. D. Park, K. H. Lee and J. S. Lee, Easily separable molecular catalysis, Catalysis Today, 2000, 63, 147-157.
DOI:10.1016/S0920-5861(00)00454-5

[135] J. H. Clark, D. J. MacQuarrie and S. J. Tavener, The application of modified mesoporous silicas in liquid phase catalysis, Dalton Trans., 2006, 4297-4309.
DOI:10.1039/b607831a

[136] T. Jackson, J. H. Clark, D. J. Macquarrie and J. H. Brophy, Base catalyst immobilised on silica coated reactor walls for use in continuous flow systems, Green Chem., 2004, 6, 193-195.
DOI:10.1039/b315764b

[137] C. Simons, U. Hanefeld, I. W. C. E. Arends, R. A. Sheldon and T. Maschmeyer, Noncovalent anchoring of asymmetric hydrogenation catalysts on a new mesoporous aluminosilicate: Application and solvent effects, Chem. Eur. J., 2004, 10, 5829-5835.
DOI:10.1002/chem.200400528

[138] H. E. B. Lempers and R. A. Sheldon, The stability of chromium in CrAPO-5, CrAPO-11, and CrS-1 during liquid phase oxidations, J. Catal., 1998, 175, 62-69.
DOI:10.1006/jcat.1998.1979

[139] I. W. C. E. Arends and R. A. Sheldon, Activities and stabilities of heterogeneous catalysts in selective liquid phase oxidations: recent developments, Appl. Catal., A: Gen., 2001, 212, 175-187.
DOI:10.1016/S0926-860X(00)00855-3

[140] R. A. Sheldon, M. Wallau, I. W. C. E. Arends and U. Schuchardt, Heterogeneous catalysts for liquid-phase oxidations: Philosophers' stones or Trojan horses?, Acc. Chem. Res., 1998, 31, 485-493.
DOI:10.1021/ar9700163

[141] A. Corma and H. Garcia, Supramolecular host-guest systems in zeolites prepared by ship-in-a-bottle synthesis, Eur. J. Inorg. Chem., 2004, 1143-1164.
DOI:10.1002/ejic.200300831

[142] C. Heinrichs and W. F. Holderich, Novel zeolitic hosts for "ship-in-a-bottle" catalysts, Catal. Lett., 1999, 58, 75-80.
DOI:10.1023/A:1019086102718

[143] A. Zsigmond, K. Bogar and F. Notheisz, Comparative study of "ship-in-a-bottle" and anchored heterogenized Rh complexes, J. Catal., 2003, 213, 103-108.
DOI:10.1016/S0021-9517(02)00023-4

[144] H. C. Kolb, M. G. Finn and K. B. Sharpless, Click chemistry: Diverse chemical function from a few good reactions, Angew. Chem. Int. Ed., 2001, 40, 2004-2021.
DOI:10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5

[145] H. C. Kolb and K. B. Sharpless, The growing impact of click chemistry on drug discovery, Drug Discov. Today, 2003, 8, 1128-1137.
DOI:10.1016/S1359-6446(03)02933-7

[146] D. Ferraris, W. J. Drury, C. Cox and T. Lectka, "Orthogonal" Lewis acids: Catalyzed ring opening and rearrangement of acylaziridines, J. Org. Chem., 1998, 4568-4569.
DOI:10.1021/jo980558d

[147] R. Huisgen, Kinetics and reaction mechanisms: selected examples from the experience of forty years, Pure Appl. Chem., 1989, 61, 613-28.
DOI:n/a

[148] R. Huisgen, G. Szeimies and L. Moebius, 1,3-Dipolar cycloadditions. XXXII. Kinetics of the addition of organic azides to carbon-carbon multiple bonds, Chem. Ber., 1967, 100, 2494-507.
DOI:10.1002/cber.19671000806

[149] K. V. Gothelf and K. A. Jřrgensen, Asymmetric 1,3-dipolar cycloaddition reactions, Chem. Rev., 1998, 98, 863-910.
DOI:10.1021/cr970324e

[150] L. Durán Páchon, J. H. van Maarseveen and G. Rothenberg, Click chemistry: Copper clusters catalyze the cycloaddition of azides with terminal alkynes, Adv. Synth. Catal., 2005, 347, 811-815.
DOI:10.1002/adsc.200404383

[151] C. Creutz, Complexities of ascorbate as a reducing agent, Inorg. Chem., 1981, 20, 4449-52.
DOI:10.1021/ic50226a088

[152] C. W. Tornře, C. Christensen and M. Meldal, Peptidotriazoles on solid phase: [1,2,3]-Triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides, J. Org. Chem., 2002, 67, 3057-3064.
DOI:10.1021/jo011148j

[153] D. D. Diaz, S. Punna, P. Holzer, A. K. Mcpherson, K. B. Sharpless, V. V. Fokin and M. G. Finn, Click chemistry in materials synthesis. 1. Adhesive polymers from copper-catalyzed azide-alkyne cycloaddition, J. Polym. Sci. Polym. Chem., 2004, 42, 4392-4403.
DOI:10.1002/pola.20330

[154] A. J. Scheel, H. Komber and B. I. Voit, Novel hyperbranched poly([1,2,3]-triazole)s derived from AB2 monomers by a 1,3-dipolar cycloaddition, Macromol. Rapid Commun., 2004, 25, 1175-1180.
DOI:n/a

[155] P. Wu, A. K. Feldman, A. K. Nugent, C. J. Hawker, A. Scheel, B. Voit, J. Pyun, J. M. J. Frechet, K. B. Sharpless and V. V. Fokin, Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(I)-catalyzed ligation of azides and alkynes, Angew. Chem. Int. Ed., 2004, 43, 3928-3932.
DOI:10.1002/anie.200454078

[156] W. S. Horne, M. K. Yadav, C. D. Stout and M. R. Ghadiri, Heterocyclic peptide backbone modifications in an -helical coiled coil, J. Am. Chem. Soc., 2004, 126, 15366-15367.
DOI:10.1021/ja0450408

[157] V. O. Rodionov, V. V. Fokin and M. G. Finn, Mechanism of the ligand-free CuI-catalyzed azide-alkyne cycloaddition reaction, Angew. Chem. Int. Ed., 2005, 44, 2210-2215.
DOI:10.1002/anie.200461496

[158] F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev, L. Noodleman, K. B. Sharpless and V. V. Fokin, Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates, J. Am. Chem. Soc., 2005, 127, 210-216.
DOI:10.1021/ja0471525

[159] P. Siemsen, R. C. Livingston and F. Diederich, Acetylenic coupling: A powerful tool in molecular construction, Angew. Chem. Int. Ed., 2000, 39, 2632-2657.
DOI:10.1002/1521-3773(20000804)39:15<2632::AID-ANIE2632>3.0.CO;2-F

[160] R. D. Stephens and C. E. Castro, The substitution of aryl iodides with cuprous acetylides. A synthesis of tolanes and heterocyclics, J. Org. Chem., 1963, 28, 3313-3315.
DOI:10.1021/jo01047a008

[161] K. Sonogashira, Y. Tohda and N. Hagihara, A convenient synthesis of acetylenes: Catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines, Tetrahedron Lett., 1975, 16, 4467-4469.
DOI:10.1016/S0040-4039(00)91094-3

[162] G. Rothenberg, Y. Yatziv and Y. Sasson, Comparative autoxidation of 3-carene and a-pinene: Factors governing regioselective hydrogen abstraction reactions, Tetrahedron, 1998, 54, 593-598.
DOI:10.1016/S0040-4020(97)10319-2

[163] R. Mestres and G. Mestres, Deltamethrin: Uses and environmental safety, Rev. Environ. Contam. Toxicol., 1992, 124, 1-18.
DOI:n/a




For comments on the site's content, please e-mail feedback@catalysisbook.org.

If you have problems viewing this page or downloading the files, contact our webmaster.



Last updated on January 21, 2008.