References for Chapter 4: Heterogeneous catalysis

[1] R. Agrawal, N. R. Singh, F. H. Ribeiro and W. N. Delgass, Sustainable fuel for the transportation sector, Proc. Natl. Acad. Sci. USA, 2007, 104, 4828-4833.

[2] J. H. Gary and G. E. Handwerk, Petroleum refining: Technology and economics; CRC Press, Boca Raton, 2001, ISBN 0824704827.

[3] M. Bryner and A. Scott, Catalysts: Fuel regulations rev up demand, Chem. Week, 2006, 168, 19-21.

[4] R. A. Sheldon and H. van Bekkum, Fine chemicals through heterogeneous catalysis; Wiley-VCH, Weinheim, 2001, ISBN 3-527-29951-3.

[5] S. S. C. Chuang, Catalysis of solid oxide fuel cells, Catalysis, 2005, 18, 186-198.

[6] L. Carrette, K. A. Friedrich and U. Stimming, Fuel cells: Principles, types, fuels, and applications, ChemPhysChem, 2000, 1, 163-193.

[7] P. V. Kamat and N. M. Dimitrijevic, Colloidal semiconductors as photocatalysts for solar energy conversion, Solar Energy, 1990, 44, 83-98.

[8] N. Serpone, A decade of heterogeneous photocatalysis in our laboratory: Pure and applied studies in energy production and environmental detoxification, Res. Chem. Intermed., 1994, 20, 953-92.

[9] B. Zaidman, H. Wiener and Y. Sasson, Formate salts as chemical carriers in hydrogen storage and transportation, Int. J. Hydr. Energy, 1986, 11, 341-7.

[10] H. Wiener, B. Zaidman and Y. Sasson, Storage of energy by solutions of alkali formate salts, Solar Energy, 1989, 43, 291-6.

[11] K. Klier, Methanol synthesis, Adv. Catal., 1982, 30, 243-313.

[12] G. P. Van der Laan and A. A. C. M. Beenackers, Kinetics and selectivity of the Fischer-Tropsch synthesis: A literature review, Catalysis Reviews-Science and Engineering, 1999, 41, 255-318.

[13] B. W. Wojciechowski, The reaction mechanism of catalytic cracking: Quantifying activity, selectivity, and catalyst decay, Catalysis Reviews-Science and Engineering, 1998, 40, 209-328.

[14] A. Feller and J. A. Lercher, Chemistry and technology of isobutane/alkene alkylation catalyzed by liquid and solid acids, Adv. Catal., 2004, 48, 229-295.

[15] I. V. Babich and J. A. Moulijn, Science and technology of novel processes for deep desulfurization of oil refinery streams: A review, Fuel, 2003, 82, 607-631.

[16] S. Eijsbouts, S. W. Mayo and K. Fujita, Unsupported transition metal sulfide catalysts: From fundamentals to industrial application, Applied Catalysis a-General, 2007, 322, 58-66.

[17] A. Corma, Transformation of hydrocarbons on zeolite catalysts, Catal. Lett., 1993, 22, 33-52.

[18] J. Huang and G. L. Rempel, Ziegler-Natta catalysts for olefin polymerization - mechanistic insights from metallocene systems, Prog. Polym. Sci., 1995, 20, 459-526.

[19] P. J. Gellings and H. J. M. Bouwmeester, Solid state aspects of oxidation catalysis, Catalysis Today, 2000, 58, 1-53.

[20] G. Ertl, H. Knozinger and J. Weitkamp, Handbook of heterogeneous catalysis; Wiley-VCH, Weinheim, 1997, ISBN 3-527-29212-8.

[21] M. B. Thathagar, J. Beckers and G. Rothenberg, Copper-catalyzed Suzuki cross-coupling using mixed nanocluster catalysts, J. Am. Chem. Soc., 2002, 124, 11858-11859.

[22] D. D. Eley and E. K. Rideal, Parahydrogen conversion on tungsten, Nature, 1940, 146, 401-2.

[23] S. Bernal, J. J. Calvino, M. A. Cauqui, J. M. Gatica, C. Larese, J. A. Perez Omil and J. M. Pintado, Some recent results on metal/support interaction effects in NM/CeO2 (NM noble metal) catalysts, Catalysis Today, 1999, 50, 175-206.

[24] K. Otto, L. P. Haack and J. E. De Vries, Identification of two types of oxidized palladium on g-alumina by x-ray photoelectron spectroscopy, Appl. Catal. B: Environ., 1992, 1, 1-12.

[25] H. S. Taylor, Mechanism of catalytic processes, J. Ind. Eng. Chem., 1920, 13, 75-9.

[26] H. S. Taylor, A theory of the catalytic surface, Proc. Roy. Soc. (London), 1925, 108A, 105-11.

[27] H. S. Taylor, The mechanism of activation at catalytic surfaces, Proc. Roy. Soc. (London), 1926, 113A, 77-86.

[28] H. J. Freund, G. Rupprechter, M. Baeumer, T. Risse, N. Ernst and J. Libuda, From real world catalysis to surface science and back: Can nanoscience help to bridge the gap?, NATO Sci. Ser., II: Math., Phys. Chem., 2003, 116, 65-92.

[29] B. M. Weckhuysen, Determining the active site in a catalytic process: Operando spectroscopy is more than a buzzword, Phys. Chem. Chem. Phys., 2003, 5, 4351-4360.

[30] M. A. Banares and I. E. Wachs, Molecular structures of supported metal oxide catalysts under different environments, J. Raman Spectr., 2002, 33, 359-380.

[31] P. Stoltze and J. K. Nřrskov, Bridging the "pressure gap" between ultrahigh-vacuum surface physics and high-pressure catalysis, Phys. Rev. Lett., 1985, 55, 2502-5.

[32] G. Ertl, Heterogeneous catalysis on atomic scale, J. Mol. Catal. A: Chem., 2002, 182-183, 5-16.

[33] G. Ertl, Reactions at well-defined surfaces, Surf. Sci., 1994, 299-300, 742-54.

[34] D. W. Goodman, Correlations between surface science models and "real-world" catalysts, J. Phys. Chem., 1996, 100, 13090-13102.

[35] D. R. Strongin, J. Carrazza, S. R. Bare and G. A. Somorjai, The importance of C7 sites and surface roughness in the ammonia synthesis reaction over iron, J. Catal., 1987, 103, 213-15.

[36] S. M. Davis, F. Zaera and G. A. Somorjai, The reactivity and composition of strongly adsorbed carbonaceous deposits on platinum. Model of the working hydrocarbon conversion catalyst, J. Catal., 1982, 77, 439-59.

[37] C. Kim and G. A. Somorjai, Effects of rhenium and sulfur on the reactivity and selectivity of platinum single-crystal catalysts, J. Catal., 1992, 134, 179-85.

[38] C. M. Friend, K. T. Queeney and D. A. Chen, Structure and reactivity of thin-film oxides and metals, Appl. Surf. Sci., 1999, 142, 99-105.

[39] D. R. Rainer and D. W. Goodman, Thin films as model catalysts, NATO ASI Ser. E: Appl. Sci., 1997, 331, 27-59.

[40] A. Baiker, Metallic glasses in heterogeneous catalysis, Faraday Discus. Chem. Soc., 1989, 87, 239-51, plate 1.

[41] S. H. Kim and G. A. Somorjai, Surface science of single-site heterogeneous olefin polymerization catalysts, Proc. Natl. Acad. Sci. USA, 2006, 103, 15289-15294.

[42] M. Frank and M. Baumer, From atoms to crystallites: adsorption on oxide-supported metal particles, Phys. Chem. Chem. Phys., 2000, 2, 3723-3737.

[43] W. T. Wallace, B. K. Min and D. W. Goodman, The nucleation, growth, and stability of oxide-supported metal clusters, Top. Catal., 2005, 34, 17-30.

[44] D. R. Rainer, C. Xu and D. W. Goodman, Characterization and catalysis studies of small metal particles on planar model oxide supports, J. Mol. Catal. A: Chem., 1997, 119, 307-325.

[45] B. Fastrup, Temperature programmed adsorption and desorption of nitrogen on iron ammonia synthesis catalysts, and consequences for the microkinetic analysis of NH3 synthesis, Top. Catal., 1994, 1, 273-83.

[46] C. Perego and P. Villa, Catalyst preparation methods, Catalysis Today, 1997, 34, 281-305.

[47] J. A. Schwarz, C. Contescu and A. Contescu, Methods for preparation of catalytic materials, Chem. Rev., 1995, 95, 477-510.

[48] E. Armbruster, A. Baiker, H. Baris, H. J. Guentherodt, R. Schlögl and B. Walz, Ammonia synthesis over a novel catalyst prepared from an amorphous hennonacontaironnonazirconium precursor, J. Chem. Soc., Chem. Commun., 1986, 299-301.

[49] M. Raney, Catalysts from alloys, Ind. Eng. Chem., 1940, 32, 1199-1203.

[50] A. J. Smith and D. L. Trimm, The preparation of skeletal catalysts, Annu. Rev. Mater. Res., 2005, 35, 127-147.

[51] E. C. Kruissink, H. L. Pelt, J. R. H. Ross and L. L. Van Reijen, The effect of sodium on the methanation activity of nickel/alumina coprecipitated catalysts, Applied Catalysis, 1981, 1, 23-9.

[52] M. Bowker, C. R. Bicknell and P. Kerwin, Ammoxidation of propane to acrylonitrile on FeSbO4, Appl. Catal. A: Gen., 1996, 136, 205-29.

[53] M. Komiyama, Design and preparation of impregnated catalysts, Catal. Rev. - Sci. Eng., 1985, 27, 341-72.

[54] L. M. van der Zande, E. A. de Graaf and G. Rothenberg, Design and parallel synthesis of novel selective hydrogen oxidation catalysts and their application in alkane dehydrogenation, Adv. Synth. Catal., 2002, 344, 884-889.

[55] C. S. Cundy and P. A. Cox, The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time, Chem. Rev., 2003, 103, 663-701.
DOI:10.1021/cr020060i S0009-2665(02)00060-2

[56] C. S. Cundy and P. A. Cox, The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism, Micropor. Mesopour. Mater., 2005, 82, 1-78.

[57] A. Corma, Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions, Chem. Rev., 1995, 95, 559-614.

[58] C. D. Chang and A. J. Silvestri, The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts, J. Catal., 1977, 47, 249-59.

[59] T. Okuhara, Water-tolerant solid acid catalysts, Chem. Rev., 2002, 102, 3641-3665.

[60] M. A. Harmer and Q. Sun, Solid acid catalysis using ion-exchange resins, Appl. Catal. A: Gen., 2001, 221, 45-62.

[61] A. Corma, L. T. Nemeth, M. Renz and S. Valencia, Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations, Nature, 2001, 412, 423-425.

[62] D. H. Olson, G. T. Kokotailo, S. L. Lawton and W. M. Meier, Crystal structure and structure-related properties of ZSM-5, J. Phys. Chem., 1981, 85, 2238-43.

[63] G. T. Kokotailo, S. L. Lawton, D. H. Olson and W. M. Meier, Structure of synthetic zeolite ZSM-5, Nature, 1978, 272, 437-8.

[64] J. W. Fulton, Selecting the catalyst configuration, Chem. Eng., 1986, 93, 97-101.

[65] S. J. Lukasiewicz, Spray-drying ceramic powders, J. Am. Ceram. Soc., 1989, 72, 617-24.

[66] E. M. Holt, The properties and forming of catalysts and absorbents by granulation, Powder Technol., 2004, 140, 194-202.

[67] X. Xu and J. A. Moulijn, Transformation of a structured carrier into structured catalyst, Chem. Ind. (Dekker), Struct. Catal. Reactors, 1998, 71, 599-615.

[68] P. Forzatti, D. Ballardini and L. Sighicelli, Preparation and characterization of extruded monolithic ceramic catalysts, Catalysis Today, 1998, 41, 87-94.

[69] F. Roozeboom, M. C. Mittelmeijer-Hazeleger, J. A. Moulijn, J. Medema, V. H. J. de Beer and P. J. Gellings, Vanadium oxide monolayer catalysts. 3. A Raman spectroscopic and temperature-programmed reduction study of monolayer and crystal-type vanadia on various supports, J. Phys. Chem., 1980, 84, 2783-2791.

[70] A. Trovarelli, C. de Leitenburg, M. Boaro and G. Dolcetti, The utilization of ceria in industrial catalysis, Catalysis Today, 1999, 50, 353-367.

[71] J. Kašpar, P. Fornasiero and M. Graziani, Use of CeO2-based oxides in the three-way catalysis, Catalysis Today, 1999, 50, 285-298.

[72] S. D. Park, J. M. Vohs and R. J. Gorte, Direct oxidation of hydrocarbons in a solid-oxide fuel cell, Nature, 2000, 404, 265-267.

[73] E. P. Murray, T. Tsai and S. A. Barnett, A direct-methane fuel cell with a ceria-based anode, Nature, 1999, 400, 649-651.

[74] J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. H. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing and K. K. Unger, Recommendations for the characterization of porous solids, Pure Appl. Chem., 1994, 66, 1739-58.

[75] A. A. Kiss, A. C. Dimian and G. Rothenberg, Solid acid catalysts for biodiesel production - towards sustainable energy, Adv. Synth. Catal., 2006, 348, 75-81.

[76] A. A. Kiss, F. Omota, A. C. Dimian and G. Rothenberg, The heterogeneous advantage: Biodiesel by catalytic reactive distillation, Top. Catal., 2006, 40, 141-150.

[77] J. F. Brazdil, Understanding catalysis using analytical characterization, Chemtech, 1999, 29, 23-29.

[78] J. W. Niemantsverdriet, Spectroscopy in Catalysis; VCH, Weinheim, 1995, ISBN 3-527-28726-4.

[79] J. M. Thomas and W. J. Thomas, Principles and practice of heterogeneous catalysis; VCH, Weinheim, 1997, ISBN 3-527-29288-8.

[80] K. Meyer, P. Lorenz, B. Böhl-Kuhn and P. Klobes, Porous solids and their characterization. Methods of investigation and application, Cryst. Res. Technol., 1994, 29, 903-30.

[81] I. Langmuir, Theory of adsorption, Phys. Rev., 1915, 6, 79-80.

[82] S. Brunauer, P. H. Emmett and E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 1938, 60, 309-19.

[83] F. Rouquerol, J. Rouquerol and K. Sing, Adsorption by powders and porous solids; Academic Press, London, 1999, ISBN 0-12-598920-2.

[84] E. P. Barrett, L. G. Joyner and P. P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 1951, 73, 373-80.

[85] R. W. Cranston and F. A. Inkley, The determination of pure structures from nitrogen adsorption isotherms, Adv. Catal., 1957, 9, 143-54.

[86] A. H. Thompson, A. J. Katz and R. A. Raschke, Mercury injection in porous media: A resistance devil's staircase with percolation geometry, Phys. Rev. Lett., 1987, 58, 29-32.

[87] E. W. Washburn, Dynamics of capillary flow, Phys. Rev., 1921, 17, 374-5.
DOI: n/a

[88] E. W. Washburn, Note on a method of determining the distribution of pore sizes in a porous material, Proc. Natl. Acad. Sci. USA, 1921, 7, 115-6.
DOI: n/a

[89] M. Boaro, M. Vicario, C. de Leitenburg, G. Dolcetti and A. Trovarelli, The use of temperature-programmed and dynamic/transient methods in catalysis: Characterization of ceria-based, model three-way catalysts, Catalysis Today, 2003, 77, 407-417.

[90] R. T. Baker, S. Bernal, G. Blanco, A. M. Cordon, J. M. Pintado, J. M. Rodriguez-Izquierdo, F. Fally and V. Perrichon, Reversible changes in the redox behavior of a Ce0.68Zr0.32O2 mixed oxide: Effect of alternating the re-oxidation temperature after reduction at 1223 K, Chem. Commun., 1999, 149-150.

[91] M. Hunger, Applications of in situ spectroscopy in zeolite catalysis, Micropor. Mesopour. Mater., 2005, 82, 241-255.

[92] G. Busca, The use of vibrational spectroscopies in studies of heterogeneous catalysis by metal oxides: An introduction, Catalysis Today, 1996, 27, 323-52.

[93] M. W. Anderson, T. Ohsuna, Y. Sakamoto, Z. Liu, A. Carlsson and O. Terasaki, Modern microscopy methods for the structural study of porous materials, Chem. Commun., 2004, 907-916.

[94] G. Fagherazzi, G. Cocco, L. Schiffini, S. Enzo, A. Benedetti, R. Passerini and G. R. Tauszik, Particle size distribution and surface area of supported metal catalysts, Chim. e l'Industria, 1978, 60, 892-900.

[95] Y. Xiang, J. Zhang and C. Liu, Verification for particle size distribution of ultrafine powders by the SAXS method, Mater. Charact., 2000, 44, 435-439.

[96] K. Siegbahn, Electron spectroscopy for chemical analysis (e.s.c.a.), Phil. Trans. Royal Soc., 1970, 268, 33-57.

[97] J. S. Brinen, Applying electron spectroscopy for chemical analysis to industrial catalysis, Acc. Chem. Res., 1976, 9, 86-92.

[98] J. Wang, H. F. M. Boelens, M. B. Thathagar and G. Rothenberg, In situ spectroscopic analysis of nanocluster formation, ChemPhysChem, 2004, 5, 93-98.

[99] D. H. Turkenburg, A. A. Antipov, M. B. Thathagar, G. Rothenberg, G. B. Sukhorukov and E. Eiser, Palladium nanoclusters in microcapsule membranes: From synthetic shells to synthetic cells, Phys. Chem. Chem. Phys., 2005, 7, 2237-2240.

[100] A. E. Aliev and R. V. Law, Solid-state NMR spectroscopy, Nucl. Magn. Reson., 2003, 32, 238-291.

[101] P. K. Isbester, L. Kaune and I. J. Munson, Magic-angle spinning NMR: A window into flow catalytic reactors, Chemtech, 1999, 29, 40-47.

[102] X. Han, Z. Yan, W. Zhang and X. Bao, Applications of in situ NMR in catalytic processes of organic reactions, Curr. Org. Chem., 2001, 5, 1017-1037.

[103] J. Ryczkowski, IR spectroscopy in catalysis, Catalysis Today, 2001, 68, 263-381.

[104] C. M. Snively, G. Oskarsdottir and J. Lauterbach, Parallel analysis of the reaction products from combinatorial catalyst libraries, Angew. Chem. Int. Ed., 2001, 40, 3028-3030.

[105] K. Wilson and J. H. Clark, Synthesis of a novel supported solid acid BF3 catalyst, Chem. Commun., 1998, 2135-2136.

[106] R. Craciun, D. J. Miller, N. Dulamita and J. E. Jackson, Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) applied in heterogeneous catalysis studies, Prog. Catal., 1996, 5, 55-76.

[107] N. Sheppard and T. T. Nguyen, The vibrational spectra of carbon monoxide chemisorbed on the surfaces of metal catalysts - a suggested scheme of interpretation, Adv. Infrared Raman Spectr., 1978, 5, 67-148.

[108] K. C. Taylor, Nitric oxide catalysis in automotive exhaust systems, Catal. Rev. - Sci. Eng., 1993, 35, 457-81.

[109] Anon, Directive 98/69/EC relating to measures to be taken against air pollution by emissions from motor vehicles, Official J. Eur. Commun., 1998, L350, 1-57.

[110] P. Overberg and L. Copeland, Drivers cut back - a 1st in 26 years, USA Today, 2007, May 17.

[111] V. P. Sisiopiku, A. Rousseau, F. H. Fouad and R. W. Peters, Technology evaluation of hydrogen light-duty vehicles, J. Environ. Eng., 2006, 132, 568-574.

[112] H. L. MacLean and L. B. Lave, Life cycle assessment of automobile/fuel options, Environ. Sci. Technol., 2003, 37, 5445-5452.

[113] A. Cybulski and J. A. Moulijn, Monoliths in heterogeneous catalysis, Catal. Rev. - Sci. Eng., 1994, 36, 179-270.

[114] R. M. Heck and R. J. Farrauto, Automobile exhaust catalysts, Appl. Catal. A: Gen., 2001, 221, 443-457.

[115] S. Rauch, B. Peucker-Ehrenbrink, L. T. Molina, M. J. Molina, R. Ramos and H. F. Hemond, Platinum group elements in airborne particles in Mexico City, Environ. Sci. Technol., 2006, 40, 7554-7560.

[116] V. F. Hodge and M. O. Stallard, Platinum and palladium in roadside dust, Environ. Sci. Technol., 1986, 20, 1058-60.

[117] J. Wang, R.-h. Zhu and Y.-z. Shi, Distribution of platinum group elements in road dust in the Beijing metropolitan area, China, J. Environ. Sci., 2007, 19, 29-34.
DOI: [118] H. Muraki and G. Zhang, Design of advanced automotive exhaust catalysts, Catalysis Today, 2000, 63, 337-345.

[119] G. Rothenberg, E. A. de Graaf and A. Bliek, Solvent-free synthesis of rechargeable solid oxygen reservoirs for clean hydrogen oxidation, Angew. Chem. Int. Ed., 2003, 42, 3366-3368.

[120] J. M. Basset and A. Choplin, Surface organometallic chemistry: A new approach to heterogeneous catalysis?, J. Mol. Catal., 1983, 21, 95-108.

[121] C. Copéret, M. Chabanas, R. P. Saint-Arroman and J.-M. Basset, Homogeneous and heterogeneous catalysis: Bridging the gap through surface organometallic chemistry, Angew. Chem. Int. Ed., 2003, 42, 156-181.

[122] S. L. Scott, J. M. Basset, G. P. Niccolai, C. C. Santini, J. P. Candy, C. Lecuyer, F. Quignard and A. Choplin, Surface organometallic chemistry: A molecular approach to surface catalysis, New J. Chem., 1994, 18, 115-22.

[123] C. W. Jones, M. W. McKittrick, J. V. Nguyen and K. Yu, Design of silica-tethered metal complexes for polymerization catalysis, Top. Catal., 2005, 34, 67-76.

[124] M. W. McKittrick, S. D. McClendon and C. W. Jones, A strategy for the preparation of isolated organometallic catalysts on silica supports - towards single-site solid catalysts, Chemical Industries (Boca Raton, FL, United States), 2005, 104, 267-278.

[125] J.-M. Basset, F. Lefebvre and C. Santini, Surface organometallic chemistry: Some fundamental features including the coordination effects of the support, Coord. Chem. Rev., 1998, 178-180, 1703-1723.

[126] R. Anwander, SOMC@PMS. Surface organometallic chemistry at periodic mesoporous silica, Chem. Mater., 2001, 13, 4419-4438.

[127] R. K. Iler, The chemistry of silica; Wiley, New York, 1979, ISBN 978-0-471-02404-0.

[128] P. P. Pescarmona and T. Maschmeyer, Oligomeric silsesquioxanes: Synthesis, characterization and selected applications, Aust. J. Chem., 2001, 54, 583-596.

[129] M. W. McKittrick and C. W. Jones, Toward single-site, immobilized molecular catalysts: Site-isolated Ti ethylene polymerization catalysts supported on porous silica, J. Am. Chem. Soc., 2004, 126, 3052-3053.

[130] F. Lefebvre and J. M. Basset, Recent applications in catalysis of surface organometallic chemistry, J. Mol. Catal. A: Chem., 1999, 146, 3-12.

[131] M. Chabanas, A. Baudouin, C. Coperet and J.-M. Basset, A highly active well-defined rhenium heterogeneous catalyst for olefin metathesis prepared via surface organometallic chemistry, J. Am. Chem. Soc., 2001, 123, 2062-2063.

[132] R. V. Chaudhari, B. M. Bhanage, R. M. Deshpande and H. Delmas, Enhancement of interfacial catalysis in a biphasic system using catalyst-binding ligands, Nature, 1995, 373, 501-3.

[133] S. Narayan, J. Muldoon, M. G. Finn, V. V. Fokin, H. C. Kolb and K. B. Sharpless, "On water": Unique reactivity of organic compounds in aqueous suspension, Angew. Chem. Int. Ed., 2005, 44, 3275-3279.

[134] E. G. Kuntz, Hydrosoluble ligands for a new technology, NATO ASI Ser. III., High Technol., 1995, 5, 177-81.

[135] B. Cornils and E. G. Kuntz, Introducing TPPTS and related ligands for industrial biphasic processes, J. Organomet. Chem., 1995, 502, 177-86.

[136] E. Kuntz, A. Amgoune, C. Lucas and G. Godard, Palladium TPPTS catalyst in water: C-allylation of phenol and guaiacol with allyl alcohol and novel isomerisation of allyl ethers of phenol and guaiacol, J. Mol. Catal. A: Chem., 2006, 244, 124-138.

[137] E. G. Kuntz, Homogeneous water, Chemtech, 1987, 17, 570-5.

[138] B. Cornils, Bulk and fine chemicals via aqueous biphasic catalysis, J. Mol. Catal. A: Chem., 1999, 143, 1-10.

[139] C. Mercier and P. Chabardes, Organometallic chemistry in industrial vitamin A and vitamin E synthesis, Chem. Ind. (Dekker) Catal. Org. React., 1995, 62, 213-22.

[140] G. Fremy, Y. Castanet, R. Grzybek, E. Monflier, A. Mortreux, A. M. Trzeciak and J. J. Ziolkowski, A new, highly selective, water-soluble rhodium catalyst for methyl acrylate hydroformylation, J. Organomet. Chem., 1995, 505, 11-16.

[141] E. Monflier, G. Fremy, Y. Castanet and A. Mortreux, Molecular recognition between chemically modified b-cyclodextrin and dec-1-ene: new prospects for biphasic hydroformylation of water-insoluble olefins, Angew. Chem. Int. Ed. Engl., 1995, 34, 2269-71.

[142] B. Fell, C. Schobben and G. Papadogianakis, Hydroformylation of homologous w-alkenecarboxylate esters with water sol. rhodium carbonyl/tertiary phosphine complex catalyst systems, J. Mol. Catal. A: Chem., 1995, 101, 179-86.

[143] V. Kotzabasakis, E. Georgopoulou, M. Pitsikalis, N. Hadjichristidis and G. Papadogianakis, Catalytic conversions in aqueous media: A novel and efficient hydrogenation of polybutadiene-1,4-block-poly(ethylene oxide) catalyzed by Rh/TPPTS complexes in mixed micellar nanoreactors, J. Mol. Catal. A: Chem., 2005, 231, 93-101.

[144] J. M. Grosselin, C. Mercier, G. Allmang and F. Grass, Selective hydrogenation of a,b-unsaturated aldehydes in aqueous organic two-phase solvent systems using ruthenium or rhodium complexes of sulfonated phosphines, Organometallics, 1991, 10, 2126-33.

[145] J. Kiji, T. Okano and T. Hasegawa, Palladium-catalyzed, arylation of ethylene (the Heck reaction) under aqueous conditions, J. Mol. Catal. A: Chem., 1995, 97, 73-7.

[146] W. Baidossi, N. Goren and J. Blum, Homogeneous and biphasic oligomerization of terminal alkynes by some water soluble rhodium catalysts, J. Mol. Catal. A: Chem., 1993, 85, 153-62.

[147] B. Cornils and W. A. Herrmann, Aqueous-phase organometallic catalysis; Wiley-VCH, Weinheim, 2004, ISBN: 9783527307128.

[148] I. T. Horváth and J. Rábai, Facile catalyst separation without water: Fluorous biphase hydroformylation of olefins, Science, 1994, 266, 72-5.

[149] I. T. Horváth, G. Kiss, R. A. Cook, J. E. Bond, P. A. Stevens, J. Rábai and E. J. Mozeleski, Molecular engineering in Homogeneous catalysis: One-phase catalysis coupled with biphase catalyst separation. The fluorous-soluble HRh(CO){P[CH2CH2(CF2)5CF3]3}3 hydroformylation system, J. Am. Chem. Soc., 1998, 120, 3133-3143.

[150] I. T. Horváth, Fluorous Biphase Chemistry, Acc. Chem. Res., 1998, 31, 641-650.

[151] B. Cornils, Fluorous biphase systems - the new phase-separation and immobilization technique, Angew. Chem. Int. Ed. Engl., 1997, 36, 2057-2059.

[152] J. J. Kampa, J. W. Nail and R. J. Lagow, The synthesis of tris(perfluoroalkyl)phosphanes, Angew. Chem. Int. Ed. Engl., 1995, 34, 1241-44.

[153] S. G. DiMagno, R. A. Williams and M. J. Therien, Facile synthesis of meso-tetrakis(perfluoroalkyl)porphyrins: Spectroscopic properties and x-ray crystal structure of highly dlectron-deficient 5,10,15,20-tetrakis(heptafluoropropyl)porphyrin, J. Org. Chem., 1994, 59, 6943-8.

[154] T. M. Keller and J. R. Griffith, The synthesis of a fluorinated phthalocyanine, J. Fluor. Chem., 1979, 13, 73-7.

[155] I. Klement, H. Lutjens and P. Knochel, Transition metal catalyzed oxidations in perfluorinated solvents, Angew. Chem. Int. Ed. Engl., 1997, 36, 1454-1456.

[156] N. Garelli and P. Vierling, Synthesis of new amphiphilic perfluoroalkylated bipyridines, J. Org. Chem., 1992, 57, 3046-51.

[157] H. V. R. Dias and H.-J. Kim, Novel tris(pyrazolyl)borates bearing perfluoroalkyl pigtails. Syntheses and characterization of the sodium and copper(I) complexes of [HB(3-(R)Pz)3]- (R = C2F5, C3F7; Pz = Pyrazolyl), Organometallics, 1996, 15, 5374-5379.

[158] K. R. Seddon, Ionic liquids for clean technology, J. Chem. Technol. Biotechnol., 1997, 68, 351-356.

[159] I. Lopez-Martin, E. Burello, P. N. Davey, K. R. Seddon and G. Rothenberg, Anion and cation effects on imidazolium salt melting points: A descriptor modelling study, ChemPhysChem, 2007, 8, 690-695.

[160] M. J. Earle, K. R. Seddon, C. J. Adams and G. Roberts, Friedel-Crafts reactions in room temperature ionic liquids, Chem. Commun., 1998, 2097-2098.

[161] P. Wasserscheid and T. Welton, Ionic liquids in synthesis; Wiley-VCH, Weinheim, 2002, ISBN 3-527-30515-7.

[162] P. Wasserscheid and W. Keim, Ionic liquids - new "solutions" for transition metal catalysis, Angew. Chem. Int. Ed., 2000, 39, 3772-3789.

[163] F. Van Rantwijk and R. A. Sheldon, Biocatalysis in ionic liquids, Chem. Rev., 2007, 107, 2757-2785.

[164] L. Durán Pachón, C. J. Elsevier and G. Rothenberg, Electroreductive palladium-catalyzed Ullmann reactions in ionic liquids: Scope and mechanism, Adv. Synth. Catal., 2006, 348, 1705-1710.

[165] M. J. Earle, J. M. S. S. Esperanca, M. A. Gilea, J. N. Canongia Lopes, L. P. N. Rebelo, J. W. Magee, K. R. Seddon and J. A. Widegren, The distillation and volatility of ionic liquids, Nature, 2006, 439, 831-834.

[166] D. Kralisch, A. Stark, S. Koersten, G. Kreisel and B. Ondruschka, Energetic, environmental and economic balances: Spice up your ionic liquid research efficiency, Green Chemistry, 2005, 7, 301-309.

[167] P. G. Jessop, In pursuit of the perfect green solvent, Can. Chem. News, 2007, 59, 16-18.

[168] S. T. Handy, M. Okello and G. Dickenson, Solvents from biorenewable sources: Ionic liquids based on fructose, Org. Lett., 2003, 5, 2513-2515.

[169] C. M. Starks, Phase-transfer catalysis. I. Heterogeneous reactions involving anion transfer by quaternary ammonium and phosphonium salts, J. Am. Chem. Soc., 1971, 93, 195-9.

[170] C. M. Starks and R. M. Owens, Phase-transfer catalysis. II. Kinetic details of cyanide displacement on 1-halooctanes, J. Am. Chem. Soc., 1973, 95, 3613-17.

[171] C. M. Starks, C. L. Liotta and M. C. Halpern, Phase-transfer catalysis - fundamentals, applications, and industrial perspectives; Springer, New York, 1994, ISBN 0412040719.

[172] L. J. Mathias and R. A. Vaidya, Inverse phase transfer catalysis. First report of a new class of interfacial reactions, J. Am. Chem. Soc., 1986, 108, 1093-4.

[173] W. K. Fife and Y. Xin, Inverse phase-transfer catalysis: probing its mechanism with competitive transacylation, J. Am. Chem. Soc., 1987, 109, 1278-9.

[174] M. Makosza, Two-phase reactions in the chemistry of carbanions and halocarbenes. A useful tool in organic synthesis, Pure Appl. Chem., 1975, 43, 439.

[175] D. Mason, S. Magdassi and Y. Sasson, Interfacial activity of quaternary salts as a guide to catalytic performance in phase-transfer catalysis, J. Org. Chem., 1990, 55, 2714-17.

[176] G. Rothenberg and Y. Sasson, Extending the haloform reaction to non-methyl ketones: oxidative cleavage of cycloalkanones to dicarboxylic acids using sodium hypochlorite under phase transfer catalysis conditions, Tetrahedron, 1996, 52, 13641-13648.

[177] S. Abramovici, R. Neumann and Y. Sasson, Sodium hypochlorite as oxidant in phase transfer catalytic systems. Part II. Oxidation of aromatic alcohols, J. Mol. Catal., 1985, 29, 299-303.

[178] O. Bortolini, V. Conte, F. Di Furia and G. Modena, Metal catalysis in oxidation by peroxides. Part 25. Molybdenum- and tungsten-catalyzed oxidations of alcohols by diluted hydrogen peroxide under phase-transfer conditions, J. Org. Chem., 1986, 51, 2661-2663.

[179] G. Barak and Y. Sasson, Effect of phase-transfer catalysis on the selectivity of hydrogen peroxide oxidation of aniline, J. Org. Chem., 1989, 54, 3484-6.

[180] E. V. Dehmlow, R. Thieser, H. A. Zahalka and Y. Sasson, Applications of phase transfer catalysis, part 30. The mechanism of N-alkylation of weak N-H acids by phase transfer catalysis, Tetrahedron Lett., 1985, 26, 297-300.

[181] H. Lebel, S. Morin and V. Paquet, Alkylation of phosphine boranes by phase-transfer catalysis, Org. Lett., 2003, 5, 2347-2349.

[182] B. Wladislaw, M. A. Bueno, L. Marzorati, C. DiVitta and J. Zukerman-Schpector, Phase transfer catalysis (PTC) sulfanylation of some 2-methylsulfinyl-cyclanones, J. Org. Chem., 2004, 69, 9296-9298.

[183] B. Lygo and B. I. Andrews, Asymmetric phase-transfer catalysis utilizing chiral quaternary ammonium salts: Asymmetric alkylation of glycine imines, Acc. Chem. Res., 2004, 37, 518-525.

[184] T. Ooi, Y. Uematsu and K. Maruoka, Asymmetric Strecker reaction of aldimines using aqueous potassium cyanide by phase-transfer catalysis of chiral quaternary ammonium salts with a tetranaphthyl backbone, J. Am. Chem. Soc., 2006, 128, 2548-2549.

[185] E. J. Park, M. H. Kim and D. Y. Kim, Enantioselective alkylation of b-Keto esters by phase-transfer catalysis using chiral quaternary ammonium salts, J. Org. Chem., 2004, 69, 6897-6899.

[186] J. W. Verbicky and E. A. O'Neil, Chiral phase-transfer catalysis. Enantioselective alkylation of racemic alcohols with a nonfunctionalized optically active phase-transfer catalyst, J. Org. Chem., 1985, 50, 1786-1787.

[187] G. Rothenberg, M. Royz, O. Arrad and Y. Sasson, In situ generation and synthetic applications of anhydrous hydrogen fluoride in a solid-liquid biphasic system, J. Chem. Soc., Perkin Trans. 1, 1999, 1491-1494.

[188] F. T. T. Ng, T. Mure, M. Jiang, M. Sultan, J.-h. Xie, P. Gayraud, W. J. Smith, M. Hague, R. Watt and S. Hodge, AVADA - a new green process for the production of ethyl acetate, Chem. Ind. (CRC Press) Catal. Org. React., 2005, 104, 251-260.

[189] M. Misono, I. Ono, G. Koyano and A. Aoshima, Heteropolyacids. Versatile green catalysts usable in a variety of reaction media, Pure Appl. Chem., 2000, 72, 1305-1311.

[190] M. J. Janik, R. J. Davis and M. Neurock, The relationship between adsorption and solid acidity of heteropolyacids, Catalysis Today, 2005, 105, 134-143.

[191] J. M. Davis and V. M. Thomas, Systematic approach to evaluating trade-offs among fuel options: The lessons of MTBE, Ann. New York Acad. Sci., 2006, 1076, 498-515.

[192] J. H. Clark, Solid acids for green chemistry, Acc. Chem. Res., 2002, 35, 791-797.

[193] E. H. van Broekhoven, F. R. M. Cabre, P. Boggard, G. Klaver and M. Vonhof, Procecss for alkylating hydrocarbons, US 5986158, 1999, (to Akzo Nobel NV).

[194] F. Maa and M. A. Hanna, Biodiesel production: A review, Bioresource Technol., 1999, 70, 1-15.

[195] B. Buczek and L. Czepirski, Applicability of used rapeseed oil for production of biodiesel, Inform, 2004, 15, 186-188.

[196] W. Körbitz, Biodiesel production in Europe and North America, an encouraging prospect, Renewable Energy, 1999, 16, 1078-1083.

[197] A. Demirbas, Current advances in alternative motor fuels, Ener. Explor. Exploit., 2003, 21, 475-487.

[198] R. Diesel, The Diesel oil engin, Engineering, 1912, 93, 395-406.

[199] M. A. Harmer, W. E. Farneth and Q. Sun, Towards the sulfuric acid of solids, Adv. Mater., 1998, 10, 1255.

[200] E. Lotero, Y. Liu, D. E. Lopez, K. Suwannakarn, D. A. Bruce and J. G. Goodwin, Synthesis of biodiesel via acid catalysis, Ind. Eng. Chem. Res., 2005, 44, 5353-5363.

[201] L. Bournay, D. Casanave, B. Delfort, G. Hillion and J. A. Chodorge, New heterogeneous process for biodiesel production: A way to improve the quality and the value of the crude glycerin produced by biodiesel plants, Catalysis Today, 2005, 106, 190-192.

[202] F. Omota, A. C. Dimian and A. Bliek, Fatty acid esterification by reactive distillation. Part 1: equilibrium-based design, Chem. Eng. Sci., 2003, 58, 3159-3174.

[203] F. Omota, A. C. Dimian and A. Bliek, Fatty acid esterification by reactive distillation: Part 2 - kinetics-based design for sulphated zirconia catalysts, Chem. Eng. Sci., 2003, 58, 3175-3185.

[204] H. Subawalla and J. R. Fair, Design guidelines for solid-catalyzed reactive distillation systems, Ind. Eng. Chem. Res., 1999, 38, 3696-3709.

[205] H. G. Schoenmakers and B. Bessling, Reactive and catalytic distillation from an industrial perspective, Chem. Eng. Prog., 2003, 42, 145-155.

[206] R. Taylor and R. Krishna, Modelling reactive distillation, Chem. Eng. Sci., 2000, 55, 5183-5229.

[207] R. Koster, B. van der Linden, E. Poels and A. Bliek, The mechanism of the gas-phase esterification of acetic acid and ethanol over MCM-41, J. Catal., 2001, 204, 333-338.

[208] M. E. Bambase, Jr., N. Nakamura, J. Tanaka and M. Matsumura, Kinetics of hydroxide-catalyzed methanolysis of crude sunflower oil for the production of fuel-grade methyl esters, J. Chem. Technol. Biotechnol., 2007, 82, 273-280.

[209] F. M. Dautzenberg and P. J. Angevine, Encouraging innovation in catalysis, Catalysis Today, 2004, 93-95, 3-16.

[210] M. P. Atkins and G. R. Evans, A review of current processes and innovations in catalytic dehydrogenation, Erdoel, Erdgas, Kohle, 1995, 111, 271-4.

For comments on the site's content, please e-mail

If you have problems viewing this page or downloading the files, contact our webmaster.

Last updated on January 21, 2008.