References for Chapter 5: Biocatalysis

[1] S. Truesdell, Biotransformations for a green future, Chem. Eng. Prog., 2005, 101, 44-47.

[2] B. Hinnemann and J. K. Nørskov, Catalysis by enzymes: The biological ammonia synthesis, Top. Catal., 2006, 37, 55-70.

[3] G. Rothenberg and J. H. Clark, Vanadium-catalysed oxidative bromination using dilute mineral Acids and hydrogen peroxide: An option for recycling waste acid streams, Org. Process Res. Dev., 2000, 4, 270-274.

[4] C. Wandrey, A. Liese and D. Kihumbu, Industrial biocatalysis: Past, present, and future, Org. Process Res. Dev., 2000, 4, 286-290.

[5] A. J. J. Straathof, S. Panke and A. Schmid, The production of fine chemicals by biotransformations, Curr. Opin. Biotechnol., 2002, 13, 548-556.

[6] T. Bugg, An introduction to enzyme and coenzyme chemistry; Blackwell Science, Oxford, 1997, ISBN 0-86542-793-3.

[7] J. M. Berg, J. L. Tymoczko and L. Stryer, Biochemistry; WH Freeman, New York, 5th edn., 2002, ISBN 0-7167-4684-0.

[8] D. Voet, J. G. Voet and C. W. Pratt, Fundamentals of biochemistry: Life at the molecular level; Wiley, New York, 2005, ISBN 0-471-21495-3.

[9] A. S. Bommarius and B. Riebel, Biocatalysis: Fundamentals and applications; Wiley-VCH, Weinheim, 2004, ISBN 3-527-30344-8.

[10] J. Cohen, Getting all turned around over the origins of life on earth, Science, 1995, 267, 1265-6.

[11] J. L. Bada, Origins of homochirality, Nature, 1995, 374, 594-5.

[12] M. Friedman, Chemistry, nutrition, and microbiology of D-amino acids, J. Agricul. Food Chem., 1999, 47, 3457-3479.

[13] N. Fujii, D-Amino acids in living higher organisms, Orig. Life Evolut. Bios., 2002, 32, 103-127.

[14] C. Weise, BRENDA: Everything you always wanted to know about enzymes, Angew. Chem. Int. Ed., 2003, 42, 5666.

[15] J. Barthelmes, C. Ebeling, A. Chang, I. Schomburg and D. Schomburg, BRENDA, AMENDA and FRENDA: The enzyme information system in 2007, Nucl. Acids Res., 2007, 35, D511-D514.

[16] W. Liu and P. Wang, Cofactor regeneration for sustainable enzymatic biosynthesis, Biotechnol. Adv., 2007, 25, 369-384.

[17] R. U. Lemieux and U. Spohr, How Emil Fischer was led to the lock and key concept for enzyme specificity, Adv. Carbohyd. Chem. Biochem., 1994, 50, 1-20.

[18] J. A. Thoma and D. E. Koshland, Jr., Stereochemistry of enzyme, substrate, and products during b-amylase action, J. Biol. Chem., 1960, 235, 2511-17.

[19] D. E. Koshland, Jr., The key-lock theory and the induced fit theory, Angew. Chem. Int. Ed. Engl., 1994, 33, 2475-2478.

[20] W. P. Jencks, Destabilization is as important as binding, Phil. Trans. Roy. Soc., Seri. A: Math., Phys. Eng., 1993, 345, 3-10.

[21] T. T. Simopoulos and W. P. Jencks, Alkaline phosphatase is an almost perfect enzyme, Biochemistry, 1994, 33, 10375-80.

[22] W. P. Jencks, Binding energy, specificity, and enzymic catalysis: The Circe effect, Adv. Enzymol., 1975, 43, 219-410.

[23] M. D. Toney and J. F. Kirsch, Lysine 258 in aspartate aminotransferase: Enforcer of the Circe effect for amino acid substrates and the general-base catalyst for the 1,3-prototropic shift, Biochemistry, 1993, 32, 1471-9.

[24] A. Warshel, J. Florian, M. Strajbl and J. Villa, Circe effect versus enzyme preorganization: What can be learned from the structure of the most proficient enzyme?, ChemBioChem, 2001, 2, 109-111.

[25] W. R. Cannon and S. J. Benkovic, Solvation, reorganization energy, and biological catalysis, J. Biol. Chem., 1998, 273, 26257-26260.

[26] A. Kraut Daniel, S. Carroll Kate and D. Herschlag, Challenges in enzyme mechanism and energetics, Annu. Rev. Biochem., 2003, 72, 517-71.

[27] F. C. Kokesh and F. H. Westheimer, Reporter group at the active site of acetoacetate decarboxylase. II. Ionization constant of the amino group, J. Am. Chem. Soc., 1971, 93, 7270-4.

[28] L. A. Highbarger, J. A. Gerlt and G. L. Kenyon, Mechanism of the reaction catalyzed by acetoacetate decarboxylase. Importance of Lysine 116 in determining the pKa of active-site Lysine 115, Biochemistry, 1996, 35, 41-6.

[29] A. J. Kresge, Electrostatic effects on acid dissociation constants. Importance of lysine 116 in determining the pKa of lysine 115 in the active site of acetoacetate decarboxylase, Chemtracts, 1997, 10, 27-28.

[30] Z. Hasan, R. Renirie, R. Kerkman, H. J. Ruijssenaars, A. F. Hartog and R. Wever, Laboratory-evolved vanadium chloroperoxidase exhibits 100-fold higher halogenating activity at alkaline pH: Catalytic effects from first and second coordination sphere mutations, J. Biol. Chem., 2006, 281, 9738-9744.

[31] A. Messerschmidt, L. Prade and R. Wever, Implications for the catalytic mechanism of the vanadium-containing enzyme chloroperoxidase from the fungus Curvularia inaequalis by x-ray structures of the native and peroxide form, Biol. Chem., 1997, 378, 309-315.

[32] P. Wasserscheid and W. Keim, Ionic liquids - new "solutions" for transition metal catalysis, Angew. Chem. Int. Ed., 2000, 39, 3772-3789.

[33] M. J. Earle, K. R. Seddon, C. J. Adams and G. Roberts, Friedel-Crafts reactions in room temperature ionic liquids, Chem. Commun., 1998, 2097-2098.

[34] A. C. Storer and R. Menard, Catalytic mechanism in papain family of cysteine peptidases, Meth. Enzymol., 1994, 244, 486-500.

[35] H. Uhlig, Industrial enzymes and their applications; Wiley, New York, 1998, ISBN 0-471-19660-6.

[36] A. Schmid, J. S. Dordick, B. Hauer, A. Kiener, M. Wubbolts and B. Witholt, Industrial biocatalysis today and tomorrow, Nature, 2001, 409, 258-268.

[37] G. Coward-Kelly and R. R. Chen, A window into biocatalysis and biotransformations, Biotechnol. Prog., 2007, 23, 52-54.

[38] O. Kirk, T. V. Borchert and C. C. Fuglsang, Industrial enzyme applications, Curr. Opin. Biotechnol., 2002, 13, 345-351.

[39] U. T. Bornscheuer and K. Buchholz, Highlights in biocatalysis - historical landmarks and current trends, Eng. Life Sci., 2005, 5, 309-323.

[40] Anon, Novozymes 2004: Industrial and technical enzymes, Focus on Catalysts, 2005, 2005, 3.

[41] Values are based on the fixed Euro:DKR exchange rate; 2006 data taken from the Novozymes stock report.

[42] J. F. Chaparro-Riggers, T. A. Rogers, E. Vazquez-Figueroa, K. M. Polizzi and A. S. Bommarius, Comparison of three enoate reductases and their potential use for biotransformations, Adv. Synth. Catal., 2007, 349, 1521-1531.

[43] W. Stampfer, B. Kosjek, C. Moitzi, W. Kroutil and K. Faber, Biocatalytic asymmetric hydrogen transfer, Angew. Chem. Int. Ed., 2002, 41, 1014-1017.

[44] M. Chartrain, P. M. Salmon, D. K. Robinson and B. C. Buckland, Metabolic engineering and directed evolution for the production of pharmaceuticals, Curr. Opin. Biotechnol., 2000, 11, 209-14.

[45] W. Niu, K. M. Draths and J. W. Frost, Benzene-free synthesis of adipic acid, Biotechnol. Prog., 2002, 18, 201-211.

[46] N. Q. Ran, D. R. Knop, K. M. Draths and J. W. Frost, Benzene-free synthesis of hydroquinone, J. Am. Chem. Soc., 2001, 123, 10927-10934.

[47] A. Berry, T. C. Dodge, M. Pepsin and W. Weyler, Application of metabolic engineering to improve both the production and use of biotech indigo, J. Ind. Microbiol. Biotechnol., 2002, 28, 127-33.

[48] G. M. Rios, M. P. Belleville, D. Paolucci and J. Sanchez, Progress in enzymatic membrane reactors - a review, J. Membr. Sci., 2004, 242, 189-196.

[49] L. Giorno and E. Drioli, Biocatalytic membrane reactors: Applications and perspectives, Trends Biotechnol., 2000, 18, 339-349.

[50] G. R. Castro and T. Knubovets, Homogeneous biocatalysis in organic solvents and water-organic mixtures, Crit. Rev. Biotechnol., 2003, 23, 195-231.

[51] R. A. Sheldon, Enzyme immobilization: The quest for optimum performance, Adv. Synth. Catal., 2007, 349, 1289-1307.

[52] M. D. Lilly, Enzymes immobilized to cellulose, Meth. Enzymol., 1976, 44, 46-53.

[53] R. A. A. Muzzarelli, Immobilization of enzymes on chitin and chitosan, Enz. Microb. Technol., 1980, 2, 177-84.

[54] B. Krajewska, Application of chitin- and chitosan-based materials for enzyme immobilizations: A review, Enz. Microb. Technol., 2004, 35, 126-139.

[55] A. I. Kallenberg, F. van Rantwijk and R. A. Sheldon, Immobilization of penicillin G acylase: The key to optimum performance, Adv. Synth. Catal., 2005, 347, 905-926.

[56] E. Katchalski-Katzir and D. M. Kraemer, Eupergit C, a carrier for immobilization of enzymes of industrial potential, J. Mol. Catal. B: Enzymatic, 2000, 10, 157-176.

[57] I. Y. Galaev and B. Mattiasson, "Smart" polymers and what they could do in biotechnology and medicine, Trends Biotechnol., 1999, 17, 335-340.

[58] B. Jeong and A. Gutowska, Lessons from nature: Stimuli-responsive polymers and their biomedical applications, Trends Biotechnol., 2002, 20, 305-311.

[59] A. E. Ivanov, E. Edink, A. Kumar, I. Y. Galaev, A. F. Arendsen, A. Bruggink and B. Mattiasson, Conjugation of penicillin acylase with the reactive copolymer of N-isopropylacrylamide: A step toward a thermosensitive industrial biocatalyst, Biotechnol. Prog., 2003, 19, 1167-1175.

[60] D. Kirstein, Chelate mediated immobilization of proteins, Adv. Molec. Cell Biol., 1996, 15A, 247-256.

[61] F. Svec, Less common applications of monoliths: I. Microscale protein mapping with proteolytic enzymes immobilized on monolithic supports, Electrophoresis, 2006, 27, 947-61.

[62] J. Kim, J. W. Grate and P. Wang, Nanostructures for enzyme stabilization, Chem. Eng. Sci., 2005, 61, 1017-1026.

[63] O. Kirk and M. W. Christensen, Lipases from Candida antarctica: Unique biocatalysts from a unique origin, Org. Process Res. Dev., 2002, 6, 446-451.

[64] A. Petri, P. Marconcini and P. Salvadori, Efficient immobilization of epoxide hydrolase onto silica gel and use in the enantioselective hydrolysis of racemic para-nitrostyrene oxide, J. Mol. Catal. B: Enzymatic, 2005, 32, 219-224.

[65] S. Braun, S. Rappoport, R. Zusman, D. Avnir and M. Ottolenghi, Biochemically active sol-gel glasses: The trapping of enzymes, Mater. Lett., 1990, 10, 1-5.

[66] D. Avnir, Organic chemistry within ceramic matrixes: Doped sol-gel materials, Acc. Chem. Res., 1995, 28, 328-34.

[67] M. T. Reetz, P. Tielmann, W. Wiesenhoefer, W. Koenen and A. Zonta, Second generation sol-gel encapsulated lipases: Robust heterogeneous biocatalysts, Adv. Synth. Catal., 2003, 345, 717-728.

[68] F. A. Quiocho and F. M. Richards, Intermolecular cross linking of a protein in the crystalline state: Carboxypeptidase A, Proc. Natl. Acad. Sci. USA, 1964, 52, 833-9.

[69] M. A. Navia and N. L. St. Clair, US Pat. 5618710, 1993, (to Vertex Pharmaceuticals, Inc.).

[70] J. Lalonde, Practical catalysis with enzyme crystals, Chemtech, 1997, 27, 38-45.

[71] T. Zelinski and H. Waldmann, Crosslinked enzyme crystals (CLECs): Efficient and stable biocatalysts for preparative organic chemistry, Angew. Chem. Int. Ed. Engl., 1997, 36, 722-724.

[72] L. Cao, F. van Rantwijk and R. A. Sheldon, Cross-Linked enzyme aggregates: A simple and effective method for the immobilization of penicillin acylase, Org. Lett., 2000, 2, 1361-1364.

[73] R. A. Sheldon, R. Schoevaart and L. M. van Langen, Cross-linked enzyme aggregates, Meth. Biotechnol., 2006, 22, 31-45.

[74] A. Chmura, G. M. van der Kraan, F. Kielar, L. M. van Langen, F. van Rantwijk and R. A. Sheldon, Cross-linked aggregates of the hydroxynitrile lyase from Manihot esculenta: Highly active and robust biocatalysts, Adv. Synth. Catal., 2006, 348, 1655-1661.

[75] A. R. Toral, A. P. de los Rios, F. J. Hernandez, M. H. A. Janssen, R. Schoevaart, F. van Rantwijk and R. A. Sheldon, Cross-linked Candida antarctica lipase B is active in denaturing ionic liquids, Enz. Microb. Technol., 2007, 40, 1095-1099.

[76] R. A. Sheldon, M. J. Sorgedrager and M. H. A. Janssen, Use of cross-linked enzyme aggregates (CLEAs) for performing biotransformations, Chim. Oggi - Chemistry Today, 2007, 25, 62-67.

[77] J. W. Frost and K. M. Draths, Biocatalytic syntheses of aromatics from D-glucose: Renewable microbial sources of aromatic compounds, Annu. Rev. Microbiol., 1995, 49, 557-79.

[78] E. J. A. X. van de Sandt and E. de Vroom, Innovations in cephalosporin and penicillin production: Painting the antibiotics industry green, Chim. Oggi, 2000, 18, 72-75.
DOI: [79] H. B. Kagan and J. C. Fiaud, Kinetic resolution, Top. Stereochem., 1988, 18, 249-330.

[80] P.-J. Um and D. G. Drueckhammer, Dynamic enzymic resolution of thioesters, J. Am. Chem. Soc., 1998, 120, 5605-5610.

[81] B. Martin-Matute and J.-E. Bäckvall, Dynamic kinetic resolution catalyzed by enzymes and metals, Curr. Opin. Chem. Biol., 2007, 11, 226-232.

[82] H. Pellissier, Dynamic kinetic resolution, Tetrahedron, 2003, 59, 8291-8327.

[83] B. A. Persson, A. L. E. Larsson, M. Le Ray and J.-E. Bäckvall, Ruthenium- and enzyme-catalyzed dynamic kinetic resolution of secondary alcohols, J. Am. Chem. Soc., 1999, 121, 1645-1650.
DOI:10.1021/ja983819+ S0002-7863(98)03819-0

[84] J. B. Crawford, R. T. Skerlj and G. J. Bridger, Spontaneous enzymatically mediated dynamic kinetic resolution of 8-Amino-5,6,7,8-tetrahydroquinoline, J. Org. Chem., 2007, 72, 669-671.

[85] A. Panova, L. J. Mersinger, Q. Liu, T. Foo, D. C. Roe, W. L. Spillan, A. E. Sigmund, A. Ben-Bassat, L. W. Wagner, D. P. O'Keefe, S. Wu, K. L. Petrillo, M. S. Payne, S. T. Breske, F. G. Gallagher and R. DiCosimo, Chemoenzymatic synthesis of glycolic acid, Adv. Synth. Catal., 2007, 349, 1462-1474.

[86] D. G. H. Ballard, A. Courtis, I. M. Shirley and S. C. Taylor, A biotech route to polyphenylene, J. Chem. Soc., Chem. Commun., 1983, 954-5.

[87] J. Sylvestre, H. Chautard, F. Cedrone and M. Delcourt, Directed evolution of biocatalysts, Org. Process Res. Dev., 2006, 10, 562-571.

[88] R. Woodyer, W. Chen and H. Zhao, Outrunning nature: Directed evolution of superior biocatalysts, J. Chem. Educ., 2004, 81, 126-133.

[89] H. Dalboge and L. Lange, Using molecular techniques to identify new microbial biocatalysts, Trends Biotechnol., 1998, 16, 265-272.

[90] H. Gavaghan, Companies of all sizes are prospecting for proteins, Nature, 2000, 404, 684-6.

[91] B. E. Jones, W. D. Grant, A. W. Duckworth and G. G. Owenson, Microbial diversity of soda lakes, Extremophiles, 1998, 2, 191-200.

[92] Y. Watanabe, Construction of heme enzymes: Four approaches, Curr. Opin. Chem. Biol., 2002, 6, 208-16.

[93] D. Prieur, Microbiology of deep-sea hydrothermal vents, Trends Biotechnol., 1997, 15, 242-244.

[94] S. Harayama, Artificial evolution by DNA shuffling, Trends Biotechnol., 1998, 16, 76-82.

[95] H. J. Muller, The relation of recombination to mutational advance, Mutat. Res., 1964, 106, 2-9.

[96] W. P. C. Stemmer, Rapid evolution of a protein in vitro by DNA shuffling, Nature, 1994, 370, 389-91.

[97] I. P. Petrounia and F. H. Arnold, Designed evolution of enzymatic properties, Curr. Opin. Biotechnol., 2000, 11, 325-330.

[98] K. Liebeton, A. Zonta, K. Schimossek, M. Nardini, D. Lang, B. W. Dijkstra, M. T. Reetz and K.-E. Jaeger, Directed evolution of an enantioselective lipase, Chem. Biol., 2000, 7, 709-718.

[99] P. J. Fagan, E. Hauptman, R. Shapiro and A. Casalnuovo, Using intelligent/random library screening to design focused libraries for the optimization of homogeneous catalysts: Ullmann ether formation, Journal of the American Chemical Society, 2000, 122, 5043-5051.

[100] O. Salazar, P. C. Cirino and F. H. Arnold, Thermostabilization of a cytochrome P450 peroxygenase, ChemBioChem, 2003, 4, 891-893.

[101] A. Sakurai and M. Sakakibara, Waste treatment using enzymes - a review, Curr. Top. Biotechnol., 2005, 2, 1-16.

[102] C. G. Whiteley and D. J. Lee, Enzyme technology and biological remediation, Enz. Microb. Technol., 2006, 38, 291-316.

[103] E. G. Hibbert and P. A. Dalby, Directed evolution strategies for improved enzymatic performance, Microb. Cell Fact., 2005, 4, 29.

[104] P. G. Schultz, The interplay between chemistry and biology in the design of enzymatic catalysts, Science, 1988, 240, 426-33.

[105] S. J. Pollack, J. W. Jacobs and P. G. Schultz, Selective chemical catalysis by an antibody, Science, 1986, 234, 1570-3.

[106] A. Tramontano, K. D. Janda and R. A. Lerner, Catalytic antibodies, Science, 1986, 234, 1566-70.
DOI: [107] J. D. Stewart, L. J. Liotta and S. J. Benkovic, Reaction mechanisms displayed by catalytic antibodies, Acc. Chem. Res., 1993, 26, 396-404.

[108] K. D. Janda, C. G. Shevlin and R. A. Lerner, Antibody catalysis of a disfavored chemical transformation, Science, 1993, 259, 490-3.

[109] D. Hilvert, Antibody catalysis of carbon-carbon bond formation and cleavage, Acc. Chem. Res., 1993, 26, 552-8.

[110] Z. S. Zhou, A. Flohr and D. Hilvert, An antibody-catalyzed allylic sulfoxide-sulfenate rearrangement, J. Org. Chem., 1999, 64, 8334-8341.

[111] E. Keinan and (Ed.), Catalytic antibodies; Wiley-VCH, Weinheim, 2005, ISBN 3-527-30688-9.

[112] V. Hanson Carl, Y. Nishiyama and S. Paul, Catalytic antibodies and their applications, Curr. Opin. Biotechnol., 2005, 16, 631-6.

[113] M. T. Martin, Commercially valuable catalytic antibodies: The life to come, Drug Discov. Today, 1996, 1, 239-247.

[114] D. W. Landry, K. Zhao, G. X. Yang, M. Glickman and T. M. Georgiadis, Antibody-catalyzed degradation of cocaine, Science, 1993, 259, 1899-901.

[115] D. W. Landry, Immunotherapy for cocaine addiction, Sci. Am., 1997, 276, 42-5.

[116] S. X. Deng, P. de Prada and D. W. Landry, Anticocaine catalytic antibodies, J. Immunol. Methods, 2002, 269, 299-310.

[117] B. Mets, G. Winger, C. Cabrera, S. Seo, S. Jamdar, G. Yang, K. Zhao, R. J. Briscoe, R. Almonte, J. H. Woods and D. W. Landry, A catalytic antibody against cocaine prevents cocaine's reinforcing and toxic effects in rats, Proc. Natl. Acad. Sci. USA, 1998, 95, 10176-81.

[118] L. E. Orgel, The origin of life on the earth, Sci. Am., 1994, 271, 76-83.

[119] C. Guerrier-Takada, K. Gardiner, T. Marsh, N. Pace and S. Altman, The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme, Cell, 1983, 35, 849-57.

[120] K. Kruger, P. J. Grabowski, A. J. Zaug, J. Sands, D. E. Gottschling and T. R. Cech, Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena, Cell, 1982, 31, 147-57.

[121] V. J. DeRose, Two decades of RNA catalysis, Chem. Biol., 2002, 9, 961-969.

[122] L. Q. Sun, M. J. Cairns, E. G. Saravolac, A. Baker and W. L. Gerlach, Catalytic nucleic acids: From lab to applications, Pharmacol. Rev., 2000, 52, 325-347.

[123] T. R. Cech, Catalytic RNA: Structure and mechanism, Biochem. Soc. Trans., 1993, 21, 229-34.

[124] P. Nissen, J. Hansen, N. Ban, P. B. Moore and T. A. Steitz, The structural basis of ribosome activity in peptide bond synthesis, Science, 2000, 289, 920-30.

[125] G. W. Muth, L. Ortoleva-Donnelly and S. A. Strobel, A single adenosine with a neutral pKa in the ribosomal peptidyl transferase center, Science, 2000, 289, 947-950.

[126] H. Yamada and M. Kobayashi, Nitrile hydratase and its application to industrial production of acrylamide, Biosci. Biotechnol. Biochem., 1996, 60, 1391-400.

[127] H. Yamada and T. Nagasawa, Production of useful amides by enzymic hydration of nitriles, Ann. N.Y. Acad. Sci., 1990, 613, 142-54.

[128] R. A. Holton, C. Somoza, H. B. Kim, F. Liang, R. J. Biediger, P. D. Boatman, M. Shindo, C. C. Smith, S. Kim, H. Nadizadeh, Y. Suzuki, C. Tao, P. Vu, S. Tang, P. Zhang, K. K. Murthi, L. N. Gentile and J. H. Liu, First total synthesis of taxol. 1. Functionalization of the B ring, J. Am. Chem. Soc., 1994, 116, 1597-8.

[129] R. A. Holton, H. B. Kim, C. Somoza, F. Liang, R. J. Biediger, P. D. Boatman, M. Shindo, C. C. Smith, S. Kim, H. Nadizadeh, Y. Suzuki, C. Tao, P. Vu, S. Tang, P. Zhang, K. K. Murthi, L. N. Gentile and J. H. Liu, First total synthesis of taxol. 2. Completion of the C and D rings, J. Am. Chem. Soc., 1994, 116, 1599-1600.

[130] K. C. Nicolaou, Z. Yang, J. J. Liu, H. Ueno, P. G. Nantermet, R. K. Guy, C. F. Claiborne, J. Renaud, E. A. Couladouros, K. Paulvannan and E. J. Sorensen, Total synthesis of taxol, Nature, 1994, 367, 630-4.

[131] K. Oyama, S. Irino, T. Harada and N. Hagi, Enzymic production of aspartame, Ann. N.Y. Acad. Sci., 1984, 434, 95-8.

[132] K. Oyama, S. Nishimura, Y. Nonaka, K. Kihara and T. Hashimoto, Synthesis of an aspartame precursor by immobilized thermolysin in an organic solvent, J. Org. Chem., 1981, 46, 5241-2.

[133] G. Lindeberg, A convenient synthesis of aspartame, J. Chem. Educ., 1987, 64, 1062-1064.

[134] T. van Herk, A. F. Hartog, H. E. Schoemaker and R. Wever, Simple enzymatic in situ generation of dihydroxyacetone phosphate and its use in a cascade reaction for the production of carbohydrates: Increased efficiency by phosphate cycling, J. Org. Chem., 2006, 71, 6244-6247.

[135] A. Ault, The monosodium glutamate story: The commercial production of MSG and other amino acids, J. Chem. Educ., 2004, 81, 347-355.

For comments on the site's content, please e-mail

If you have problems viewing this page or downloading the files, contact our webmaster.

Last updated on January 21, 2008.