References for Chapter 6: Computer applications in catalysis research

[1] D. A. Skoog, D. M. West and F. J. Holler, Fundamentals of Analytical Chemistry; New York, 1992, ISBN: 0-03-074922-0.

[2] A. C. Dimian, Integrated design and simulation of chemical processes; Elsevier, Amsterdam, 2003, ISBN: 0444829962.

[3] P. W. Atkins, Physical Chemistry; Oxford University Press, Oxford, 1994, ISBN 0-19-855730-2.

[4] T. J. H. Vlugt, R. Krishna and B. Smit, Molecular simulations of adsorption isotherms for linear and branched alkanes and their mixtures in silicalite, J. Phys. Chem. B, 1999, 103, 1102-1118.
DOI:10.1021/jp982736c

[5] C. R. A. Catlow, D. H. Gay, M. A. Nygren and D. C. Sayle, Computer simulation of structural, defect and surface properties of solids, NATO ASI Ser. E: Appl. Sci., 1997, 331, 479-521.
DOI:n/a

[6] K. Binder, J. Horbach, W. Kob, W. Paul and F. Varnik, Molecular dynamics simulations, J. Phys. Condensed Matter, 2004, 16, S429-S453.
DOI:10.1088/0953-8984/16/5/006

[7] A. Warshel and M. Levitt, Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme, J. Mol. Biol., 1976, 103, 227-249.
DOI:10.1016/0022-2836(76)90311-9

[8] S. A. French, A. A. Sokol, S. T. Bromley, C. R. A. Catlow, S. C. Rogers, F. King and P. Sherwood, From CO2 to methanol by hybrid QM/MM embedding, Angew. Chem. Int. Ed., 2001, 40, 4437-4440.
DOI:10.1002/1521-3773(20011203)40:23<4437::AID-ANIE4437>3.0.CO;2-L

[9] E. J. M. Leenders, L. Guidoni, U. Roethlisberger, J. Vreede, P. G. Bolhuis and E. J. Meijer, Protonation of the chromophore in the Photoactive Yellow Protein, J. Phys. Chem. B, 2007, 111, 3765-3773.
DOI:10.1021/jp067158b

[10] P. Carloni and U. Rothlisberger, Simulations of enzymatic systems: Perspectives from Car-Parrinello molecular dynamics simulations, in Theor. Comp. Chem., Elsevier, 2001, vol. 9, ISBN 0-444-50292-0.

[11] C. Amatore and A. Jutand, Anionic Pd(0) and Pd(II) intermediates in palladium-catalyzed Heck and cross-coupling reactions, Acc. Chem. Res., 2000, 33, 314-321.
DOI:10.1021/ar980063a

[12] A. Warshel, Computer simulations of enzyme catalysis: Methods, progress, and insights, Annu. Rev. Biophys. Biomol. Struct., 2003, 32, 425-443.
DOI:10.1146/annurev.biophys.32.110601.141807

[13] I. Maxwell, C. Williams, F. Muller and B. Krutzen, Zeolite catalysis - for the fuels of today and tomorrow, Spec. Chem. Mag., 1993, 13, 79, 81-2, 84, 86.
DOI:n/a

[14] A. Corma and J. M. Serra, Heterogeneous combinatorial catalysis applied to oil refining, petrochemistry and fine chemistry, Catalysis Today, 2005, 107-108, 3-11.
DOI:10.1016/j.cattod.2005.07.117

[15] N. Y. Chen, S. J. Lucki and E. B. Mower, Cage effect on product distribution from cracking over crystalline aluminosilicate zeolites, J. Catal., 1969, 13, 331-4.
DOI:10.1016/0021-9517(69)90409-6

[16] R. L. Gorring, Diffusion of normal paraffins in zeolite T. Occurrence of window effect, J. Catal., 1973, 31, 13-26.
DOI:10.1016/0021-9517(73)90265-0

[17] D. M. Ruthven, The window effect in zeolitic diffusion, Micropor. Mesopour. Mater., 2006, 96, 262-269.
DOI:10.1016/j.micromeso.2006.07.005

[18] D. Dubbeldam, S. Calero, T. L. M. Maesen and B. Smit, Understanding the window effect in zeolite catalysis, Angew. Chem. Int. Ed., 2003, 42, 3624-3626.
DOI:10.1002/anie.200351110

[19] D. Dubbeldam, S. Calero, T. L. M. Maesen and B. Smit, Incommensurate diffusion in confined systems, Phys. Rev. Lett., 2003, 90, 245901/1-245901/4.
DOI:10.1103/PhysRevLett.90.245901

[20] D. Dubbeldam and R. Q. Snurr, Recent developments in the molecular modeling of diffusion in nanoporous materials, Molec. Sim., 2007, 33, 305.
DOI:n/a

[21] P. Cossee, Ziegler-Natta catalysis. I. Mechanism of polymerization of a-olefins with Ziegler-Natta catalysts, J. Catal., 1964, 3, 80-8.
DOI:10.1016/0021-9517(64)90095-8

[22] E. J. Arlman and P. Cossee, Ziegler-Natta catalysis. III. Stereospecific polymerization of propene with the catalyst system TiCl3-AlEt3, J. Catal., 1964, 3, 99-104.
DOI:10.1016/0021-9517(64)90097-1

[23] T. Yoshida, N. Koga and K. Morokuma, Ab Initio Theoretical Study on Ethylene Polymerization with Homogeneous Silylene-Bridged Group 4 Metallocene Catalysts. Ethylene Insertion and -Elimination, Organometallics, 1995, 14, 746-758.
DOI:10.1021/om00002a024

[24] S. Aiet-Mohand, F. Henin and J. Muzart, Palladium(II)-mediated oxidation of alcohols using 1,2-dichloroethane as Pd(0) reoxidant, Tetrahedron Lett., 1995, 36, 2473-6.
DOI:10.1016/0040-4039(95)00286-3

[25] G. Rothenberg, S. Humbel and J. Muzart, Palladium-catalyzed oxidation of alcohols to carbonyl compounds with 1,2-dichloroethane as the primary oxidant: A theoretical study, J. Chem. Soc., Perkin Trans. 2, 2001, 1998-2004.
DOI:10.1039/b102256n

[26] J. K. Nørskov and C. H. Christensen, Toward efficient hydrogen production at surfaces, Science, 2006, 312, 1322-1323.
DOI:10.1126/science.1127180

[27] A. Hellman, E. J. Baerends, M. Biczysko, T. Bligaard, C. H. Christensen, D. C. Clary, S. Dahl, R. van Harrevelt, K. Honkala, H. Jonsson, G. J. Kroes, M. Luppi, U. Manthe, J. K. Norskov, R. A. Olsen, J. Rossmeisl, E. Skulason, C. S. Tautermann, A. J. C. Varandas and J. K. Vincent, Predicting catalysis: Understanding ammonia synthesis from first-principles calculations, J. Phys. Chem. B, 2006, 110, 17719-17735.
DOI:10.1021/jp056982h

[28] E. Burello and G. Rothenberg, In silico design in homogeneous catalysis using descriptor modelling, Int. J. Mol. Sci., 2006, 7, 375-404.
Free access: PDF file

[29] G. Rothenberg, E. A. de Graaf and A. Bliek, Solvent-free synthesis of rechargeable solid oxygen reservoirs for clean hydrogen oxidation, Angew. Chem. Int. Ed., 2003, 42, 3366-3368.
DOI:10.1002/anie.200351545

[30] C. Klanner, D. Farrusseng, L. Baumes, M. Lengliz, C. Mirodatos and F. Schueth, The development of descriptors for solids: Teaching "catalytic intuition" to a computer, Angew. Chem. Int. Ed., 2004, 43, 5347-5349.
DOI:10.1002/anie.200460731

[31] H. Bönnemann, Organocobalt compounds in pyridine syntheses - an example for structure-activity relationships in homogeneous catalysis, Angew. Chem. Int. Ed. Engl., 1985, 24, 248.
DOI: 10.1002/anie.198502372

[32] K. D. Cooney, T. R. Cundari, N. W. Hoffman, K. A. Pittard, M. D. Temple and Y. Zhao, A priori assessment of the stereoelectronic profile of phosphines and phosphites, J. Am. Chem. Soc., 2003, 125, 4318-4324.
DOI:10.1021/ja021254i

[33] C. A. Tolman, Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis, Chem. Rev., 1977, 77, 313-48.
DOI:10.1021/cr60307a002

[34] P. Dierkes and P. W. N. M. van Leeuwen, The bite angle makes the difference: a practical ligand parameter for diphosphine ligands, J. Chem. Soc., Dalton Trans., 1999, 1519-1530.
DOI:10.1039/a807799a

[35] D. White, B. C. Taverner, P. G. L. Leach and N. J. Coville, Quantification of Substituent and Ligand Size by the Use of Solid Angles, J. Comp. Chem., 1993, 14, 1042-1049.
DOI:10.1002/jcc.540140906

[36] B. J. Dunne, R. B. Morris and A. G. Orpen, Structural systematics. Part 3. Geometry deformations in triphenylphosphine fragments: a test of bonding theories in phosphine complexes, J. Chem. Soc., Dalton Trans., 1991, 653-661.
DOI:10.1039/DT9910000653

[37] J. Aires-de-Sousa and J. Gasteiger, Prediction of enantiomeric excess in a combinatorial library of catalytic enantioselective reactions, J. Comb. Chem., 2005, 7, 298-301.
DOI:10.1021/cc049961q

[38] J. Aires-de-Sousa and J. Gasteiger, New description of molecular chirality and its application to the prediction of the preferred enantiomer in stereoselective reactions, J. Chem. Inf. Comp. Sci., 2001, 41, 369-375.
DOI:10.1021/ci000125nS0095-2338(00)00125-6

[39] R. D. I. Cramer, D. E. Patterson and D. J. Bunce, Comparative Molecular Field Analysis (CoMFA). 1. Effect of Shape on Binding of Steroids to Carrier Proteins, Journal of American Chemical Society, 1988, 110, 5959-5967.
DOI:10.1021/ja00226a005

[40] K. B. Lipkowitz, S. Schefzick and D. Avnir, Enhancement of enantiomeric excess by ligand distortion, J. Am. Chem. Soc., 2001, 123, 6710-6711.
DOI:10.1021/ja015903m

[41] K. B. Lipkowitz and S. Schefzick, Ligand distortion modes leading to increased chirality content of Katsuki-Jacobsen catalysts, Chirality, 2002, 14, 677-682.
DOI:10.1002/chir.10118

[42] K. B. Lipkowitz and M. C. Kozlowski, Understanding stereoinduction in catalysis via computer: New tools for asymmetric synthesis, Synlett, 2003, 1547-1565.
DOI:10.1002/chin.200342296

[43] K. B. Lipkowitz and M. Pradhan, Computational studies of chiral catalysts: A comparative molecular field analysis of an asymmetric Diels-Alder reaction with catalysts containing bisoxazoline or phosphinooxazoline ligands, Journal of Organic Chemistry, 2003, 68, 4648-4656.
DOI:10.1021/jo0267697

[44] H. Zabrodsky and D. Avnir, Continuous symmetry measures. 4. Chirality, J. Am. Chem. Soc., 1995, 117, 462-473.
DOI:10.1021/ja00106a053

[45] R. J. Bubel, W. Douglass and D. P. White, Molecular mechanics-based measures of steric effects: Customized code to compute ligand repulsive energies, Journal of Computational Chemistry, 2000, 21, 239-246.
DOI:10.1002/(SICI)1096-987X(200002)21:3<239::AID-JCC7>3.0.CO;2-0

[46] A. M. Gillespie and D. P. White, Understanding the steric control of stereoselective olefin binding in cyclopentadienyl complexes of rhenium: An application of de novo ligand design, Organometallics, 2001, 20, 5149-5155.
DOI:10.1021/om010481a

[47] A. M. Gillespie, G. R. Morello and D. P. White, De novo ligand design: Understanding stereoselective olefin binding to h5-C5H5)Re(NO)(PPh3)+ with molecular mechanics, semiempirical quantum mechanics, and density functional theory, Organometallics, 2002, 21, 3913-3921.
DOI:10.1021/om020386h

[48] A. Caflisch and M. Karplus, Computational combinatorial chemistry for de novo ligand design: Review and assessment, Persp. Drug Disc. Design, 1995, 3, 51-84.
DOI:10.1007/BF02174467

[49] H.-J. Boehm, Fragment-based de novo ligand design, Alfred Benzon Symp., 1996, 39, 402-413.
DOI:n/a

[50] R. Diestel, Graph Theory, in Series Graph Theory, vol. 173, Springer Verlag, New York, 2000, ISBN 3-540-26182-6.

[51] P. D. Iedema and H. C. J. Hoefsloot, Synthesis of branched polymer architectures from molecular weight and branching distributions for radical polymerisation with long-chain branching, accounting for topology-controlled random scission, Macromol. Theor. Simul., 2001, 10, 855-869.
DOI:10.1002/1521-3919(20011101)10:9<855::AID-MATS855>3.0.CO;2-A

[52] E. Burello and G. Rothenberg, Topological mapping of bidentate ligands: A fast approach for screening homogeneous catalysts, Adv. Synth. Catal., 2005, 347, 1969-1977.
DOI:10.1002/adsc.200505220

[53] S. Chavali, B. Lin, D. C. Miller and K. V. Camarda, Environmentally-benign transition metal catalyst design using optimization techniques, Computers & Chemical Engineering, 2004, 28, 605-611.
DOI:10.1016/j.compchemeng.2004.02.005

[54] B. Lin, S. Chavali, K. Camarda and D. C. Miller, Computer-aided molecular design using Tabu search, Computers & Chemical Engineering, 2005, 29, 337-347.
DOI:10.1016/j.compchemeng.2004.10.008

[55] J. A. Hageman, J. A. Westerhuis, H. W. Frühauf and G. Rothenberg, Design and assembly of virtual homogeneous catalyst libraries - towards in silico catalyst optimisation, Adv. Synth. Catal., 2006, 348, 361-369.
DOI:10.1002/adsc.200505299

[56] J. A. Hageman, R. Wehrens, H. A. Van Sprang and L. M. C. Buydens, Hybrid genetic algorithm-tabu search approach for optimizing multilayer optical coatings, Anal. Chim. Acta, 2003, 490, 211-222.
DOI:10.1016/S0003-2670(03)00753-0

[57] P. Willett, Chemoinformatics - similarity and diversity in chemical libraries, Curr. Opin. Biotechnol., 2000, 11, 85-88.
DOI:10.1016/S0958-1669(99)00059-2

[58] S. Fergus, A. Bender and D. R. Spring, Assessment of structural diversity in combinatorial synthesis, Curr. Opin. Chem. Biol., 2005, 9, 304-309.
DOI:10.1016/j.cbpa.2005.03.004

[59] A. G. Maldonado, J. P. Doucet, M. Petitjean and B. T. Fan, Molecular similarity and diversity in chemoinformatics: From theory to applications, Molecular Diversity, 2006, 10, 39-79.
DOI:10.1007/s11030-006-8697-1

[60] V. J. Gillet, P. Willett and J. Bradshaw, The effectiveness of reactant pools for generating structurally-driven combinatorial libraries, J. Chem. Inf. Comput. Sci., 1997, 37, 731.
DOI:10.1021/ci970420g

[61] J. A. Westerhuis, J. A. Hageman, H. W. Frühauf and G. Rothenberg, Understanding ligand diversity, Chim. Oggi, 2007, 25, 28-31.
Free access: PDF file

[62] P. F. de Aguiar, B. Bourguignon, M. S. Khots, D. L. Massart and R. Phan-Than-Luu, D-optimal designs, Chemom. Intel. lab. syst., 1995, 30, 199-210.
DOI:10.1016/0169-7439(94)00076-X

[63] M. Baroni, S. Clementi, G. Cruciani, N. Kettaneh-Wold and S. Wold, D-optimal designs in QSAR, QSAR, 1993, 12, 225-31.
DOI: 10.1002/qsar.19930120302

[64] I.-M. Olsson, J. Gottfries and S. Wold, D-optimal onion designs in statistical molecular design, Chemom. Intel. lab. syst., 2004, 73, 37-46.
DOI: 10.1016/j.chemolab.2004.04.001

[65] I.-M. Olsson, J. Gottfries and S. Wold, Controlling coverage of D-optimal onion designs and selections, J. Chemom., 2004, 18, 548-557.
DOI: 10.1016/10.1002/cem.901

[66] G. Rothenberg, J. A. Hageman, F. Clerc, H.-W. Frühauf and J. A. Westerhuis, How to find the best homogeneous catalyst, Chem. Ind. (CRC Press), Catal. Org. React., 2006, 115, 261-270.
Free access: PDF file

[67] Y. Jin, A comprehensive survey of fitness approximation in evolutionary computation, Soft Computing, 2005, 9, 3-12.
DOI:10.1007/s00500-003-0328-5

[68] M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, J. Catal., 1989, 115, 301-9.
DOI:10.1016/0021-9517(89)90034-1

[69] J. Beckers, L. M. van der Zande and G. Rothenberg, Clean diesel power via microwave susceptible oxidation catalysts, ChemPhysChem, 2006, 7, 747-755.
DOI:10.1002/cphc.200500420

[70] C. Klanner, D. Farrusseng, L. Baumes, C. Mirodatos and F. Schueth, How to design diverse libraries of solid catalysts?, QSAR Comb. Sci., 2003, 22, 729-736.
DOI:10.1002/qsar.200320003

[71] D. Farrusseng, C. Klanner, L. Baumes, M. Lengliz, C. Mirodatos and F. Schueth, Design of discovery libraries for solids based on QSAR models, QSAR Comb. Sci., 2005, 24, 78-93.
DOI:10.1002/qsar.200420066

[72] M. Holena and M. Baerns, Feedforward neural networks in catalysis. A tool for the approximation of the dependency of yield on catalyst composition, and for knowledge extraction, Catalysis Today, 2003, 81, 485-494.
DOI:10.1016/S0920-5861(03)00147-0

[73] C. Klanner, D. Farrusseng, L. Baumes, M. Lengliz, C. Mirodatos and F. Schueth, The development of descriptors for solids: Teaching "catalytic intuition" to a computer, Angew. Chem. Int. Ed., 2004, 43, 5347-5349.
DOI:10.1002/anie.200460731

[74] A. Corma, J. M. Serra, E. Argente, V. Botti and S. Valero, Application of artificial neural networks to combinatorial catalysis: modeling and predicting ODHE catalysts, ChemPhysChem, 2002, 3, 939-945.
DOI:10.1002/1439-7641(20021115)3:11<939::AID-CPHC939>3.0.CO;2-E

[75] J. M. Serra, A. Corma, S. Valero, E. Argente and V. Botti, Soft computing techniques applied to combinatorial catalysis: a new approach for the discovery and optimization of catalytic materials, QSAR Comb. Sci., 2007, 26, 11-26.
DOI:10.1002/qsar.200420051

[76] A. Corma, J. M. Serra, P. Serna and M. Moliner, Integrating high-throughput characterization into combinatorial heterogeneous catalysis: unsupervised construction of quantitative structure/property relationship models, J. Catal., 2005, 232, 335-341.
DOI:10.1016/j.jcat.2005.03.019

[77] F. H. Arnold, Combinatorial and computational challenges for biocatalyst design, Nature, 2001, 409, 253-257.
DOI:10.1038/35051731

[78] E. G. Hibbert and P. A. Dalby, Directed evolution strategies for improved enzymatic performance, Microb. Cell Fact., 2005, 4, 29.
DOI:10.1186/1475-2859-4-29

[79] R. J. Hayes, J. Bentzien, M. L. Ary, M. Y. Hwang, J. M. Jacinto, J. Vielmetter, A. Kundu and B. I. Dahiyat, Combining computational and experimental screening for rapid optimization of protein properties, Proc. Natl. Acad. Sci. USA, 2002, 99, 15926-15931.
DOI:10.1073/pnas.212627499

[80] D. N. Bolon and S. L. Mayo, Enzyme-like proteins by computational design, Proc. Natl. Acad. Sci. USA, 2001, 98, 14274-14279.
DOI:10.1073/pnas.251555398

[81] M. A. Dwyer, L. L. Looger and H. W. Hellinga, Computational design of a biologically active enzyme, Science, 2004, 304, 1967-1971.
DOI:10.1126/science.1098432

[82] J. K. Lassila, J. R. Keeffe, P. Oelschlaeger and S. L. Mayo, Computationally designed variants of Escherichia coli chorismate mutase show altered catalytic activity, PEDS, 2005, 18, 161-163.
DOI:10.1093/protein/gzi015

[83] A. Korkegian, M. E. Black, D. Baker and B. L. Stoddard, Computational thermostabilization of an enzyme, Science, 2005, 308, 857-860.
DOI:10.1126/science.1107387

[84] J. M. Caruthers, J. A. Lauterbach, K. T. Thomson, V. Venkatasubramanian, C. M. Snively, A. Bhan, S. Katare and G. Oskarsdottir, Catalyst design: Knowledge extraction from high-throughput experimentation, J. Catal., 2003, 216, 98-109.
DOI:10.1016/S0021-9517(02)00036-2

[85] D. L. Massart, B. G. M. Vandeginste, L. M. C. Buydens, S. de Jong, P. J. Lewi and J. Smeyers-Verbeke, Handbook of chemometrics and qualimetrics; Elsevier, 1998, ISBN 0444828540.

[86] R. L. Tranter, Design and analysis in chemical research; CRC Press, Sheffield, 2000, ISBN 1-85075-994-4.

[87] L. Eriksson and E. Johansson, Multivariate design and modeling in QSAR, Chemom. Intell. Lab. Syst., 1996, 34, 1-19.
DOI:10.1016/0169-7439(96)00023-8

[88] G. R. Famini and L. Y. Wilson, Using theoretical descriptors in linear free energy relationships: characterizing several polarity, acid and basicity scales, J. Phys. Org. Chem., 1999, 12, 645-653.
DOI:n/a

[89] A. Tropsha, P. Gramatica and V. K. Gombar, The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models, QSAR Comb. Sci., 2003, 22, 69-77.
DOI:10.1002/qsar.200390007

[90] A. L. Fernandez, C. Reyes, A. Prock and W. P. Giering, The stereoelectronic parameters of phosphites. The quantitative analysis of ligand effects (QALE), J. Chem. Soc., Perkin Trans. 2, 2000, 1033-1041.
DOI:10.1039/a909250a

[91] A. Bocker, G. Schneider and A. Teekentrup, Status of HTS data mining approaches, QSAR Comb. Sci., 2004, 23, 207-213.
DOI:10.1002/qsar.200330860

[92] W. P. Walters and B. B. Goldman, Feature selection in quantitative structure-activity relationships, Curr. Opin. Drug Discov. Develop., 2005, 8, 329-333.
DOI: n/a.

[93] S. Wold, K. Esbensen and P. Geladi, Principal component analysis, Chemom. Intell. Lab. Syst., 1987, 2, 37-52.
DOI:10.1016/0169-7439(87)80084-9

[94] P. Geladi and B. R. Kowalski, Partial least-squares regression: A tutorial, Anal. Chim. Acta, 1986, 185, 1-17.
DOI:10.1016/0003-2670(86)80028-9

[95] R. Carlson and H. Gautun, Combinatorial libraries and the development of organic synthetic methods. PLS modelling to discriminate between successful and failed reaction systems, Chemometrics and Intelligent Laboratory Systems, 2005, 78, 113-124.
DOI:10.1016/j.chemolab.2004.12.015

[96] E. Burello, P. Marion, J.-C. Galland, A. Chamard and G. Rothenberg, Ligand Descriptor analysis in nickel-catalysed hydrocyanation: A combined experimental and theoretical study, Adv. Synth. Catal., 2005, 347, 803-810.
DOI:10.1002/adsc.200404363

[97] J. M. Serra, A. Corma, A. Chica, E. Argente and V. Botti, Can artificial neural networks help the experimentation in catalysis?, Catalysis Today, 2003, 81, 393-403.
DOI:10.1016/S0920-5861(03)00137-8

[98] T. R. Cundari, J. Deng, H. F. Pop and C. Sarbu, Structural analysis of transition metal beta-X substituent interactions. Toward the use of soft computing methods for catalyst modeling, Journal of Chemical Information and Computer Sciences, 2000, 40, 1052-1061.
DOI:10.1021/ci0000023

[99] T. R. Cundari and M. Russo, Database mining using soft computing techniques. An integrated neural network-fuzzy logic-genetic algorithm approach, Journal of Chemical Information and Computer Sciences, 2001, 41, 281-287.
DOI:10.1021/ci0000068

[100] T. R. Cundari, C. Sarbu and H. F. Pop, Robust fuzzy principal component analysis (FPCA). A comparative study concerning interaction of carbon-hydrogen bonds with molybdenum-oxo bonds, Journal of Chemical Information and Computer Sciences, 2002, 42, 1363-1369.
DOI:10.1021/ci025524s

[101] E. Burello, D. Farrusseng and G. Rothenberg, Combinatorial explosion in homogeneous catalysis: Screening 60,000 cross-coupling reactions, Adv. Synth. Catal., 2004, 346, 1844-1853.
DOI:10.1002/adsc.200404170

[102] A. Golbraikh and A. Tropsha, Beware of q2!, J. Molec. Graph. Model., 2002, 20, 269-276.
DOI:10.1016/S1093-3263(01)00123-1

[103] A. Golbraikh, M. Shen, Z. Xiao, Y.-D. Xiao, K.-H. Lee and A. Tropsha, Rational selection of training and test sets for the development of validated QSAR models, J. Computer-Aided Molec. Design, 2003, 17, 241-253.
DOI:10.1023/A:1025386326946

[104] R. Wehrens, H. Putter and L. M. C. Buydens, The bootstrap: A tutorial, Chemom. Intell. Lab. Syst., 2000, 54, 35-52.
DOI:10.1016/S0169-7439(00)00102-7

[105] J. Mandel and R. W. Gerlach, The regression analysis of collinear data, J. Res. Nat. Inst. Stand. Technol., 1986, 90, 465-478.
DOI:n/a

[106] L. M. van der Zande, Y. Zhang-Steenwinkel, G. Rothenberg and A. Bliek, Microwave regeneration of diesel soot filters, NATO Sci. Ser. II: Math. Phys. Chem., 2004, 173, 247-251.
Free access: PDF file




For comments on the site's content, please e-mail feedback@catalysisbook.org.

If you have problems viewing this page or downloading the files, contact our webmaster.



Last updated on January 21, 2008.